Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
MODELS = { | |
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", | |
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct", | |
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus", | |
} | |
def get_client(model_name): | |
model_id = MODELS[model_name] | |
hf_token = os.getenv("HF_TOKEN") | |
if not hf_token: | |
raise ValueError("HF_TOKEN environment variable is required") | |
return InferenceClient(model_id, token=hf_token) | |
def respond( | |
message, | |
chat_history, | |
model_name, | |
max_tokens, | |
temperature, | |
top_p, | |
system_message, | |
): | |
try: | |
client = get_client(model_name) | |
except ValueError as e: | |
chat_history.append((message, str(e))) | |
return chat_history | |
messages = [{"role": "system", "content": system_message}] | |
for human, assistant in chat_history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
try: | |
if "Cohere" in model_name: | |
# Cohere 모델을 위한 비스트리밍 처리 | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
assistant_message = response.choices[0].message.content | |
chat_history.append((message, assistant_message)) | |
yield chat_history | |
else: | |
# 다른 모델들을 위한 스트리밍 처리 | |
stream = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True, | |
) | |
partial_message = "" | |
for response in stream: | |
if response.choices[0].delta.content is not None: | |
partial_message += response.choices[0].delta.content | |
if len(chat_history) > 0 and chat_history[-1][0] == message: | |
chat_history[-1] = (message, partial_message) | |
else: | |
chat_history.append((message, partial_message)) | |
yield chat_history | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
chat_history.append((message, error_message)) | |
yield chat_history | |
def clear_conversation(): | |
return [] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Prompting AI Chatbot") | |
gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_name = gr.Radio( | |
choices=list(MODELS.keys()), | |
label="Language Model", | |
value="Zephyr 7B Beta" | |
) | |
max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
system_message = gr.Textbox( | |
value="""반드시 한글로 답변할 것. | |
너는 최고의 비서이다. | |
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라. | |
""", | |
label="System Message", | |
lines=3 | |
) | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(label="메세지를 입력하세요") | |
with gr.Row(): | |
submit_button = gr.Button("전송") | |
clear_button = gr.Button("대화 내역 지우기") | |
msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
clear_button.click(clear_conversation, outputs=chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() |