Spaces:
Sleeping
Sleeping
File size: 2,472 Bytes
9c880cb 5bdf9aa cfab2e6 32957d4 cfab2e6 a41f6e0 cfab2e6 a41f6e0 cfab2e6 a41f6e0 cfab2e6 a41f6e0 cfab2e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from huggingface_hub import InferenceClient
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Mixtral 8x7B": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Cohere Command R+": "CohereForAI/c4ai-command-r-plus",
}
def get_client(model_name):
return InferenceClient(MODELS[model_name])
def respond(
message,
chat_history,
model_name,
max_tokens,
temperature,
top_p,
system_message,
):
client = get_client(model_name)
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
with gr.Blocks() as demo:
gr.Markdown("# Advanced AI Chatbot")
gr.Markdown("Chat with different language models and customize your experience!")
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(MODELS.keys()),
label="Language Model",
value="Zephyr 7B Beta"
)
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
system_message = gr.Textbox(
value="You are a friendly and helpful AI assistant.",
label="System Message",
lines=3
)
with gr.Column(scale=2):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your message")
clear = gr.Button("Clear")
msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch() |