Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import gradio as gr | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, TITLE, | |
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT | |
) | |
from src.benchmarks import LongDocBenchmarks, QABenchmarks | |
from src.columns import COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL | |
from src.components import ( | |
get_anonymous_checkbox, | |
get_domain_dropdown, | |
get_language_dropdown, | |
get_leaderboard_table, | |
get_metric_dropdown, | |
get_noreranking_dropdown, | |
get_reranking_dropdown, | |
get_revision_and_ts_checkbox, | |
get_search_bar, | |
get_version_dropdown, | |
) | |
from src.css_html_js import custom_css | |
from src.envs import ( | |
API, | |
BENCHMARK_VERSION_LIST, | |
DEFAULT_METRIC_LONG_DOC, | |
DEFAULT_METRIC_QA, | |
EVAL_RESULTS_PATH, | |
LATEST_BENCHMARK_VERSION, | |
METRIC_LIST, | |
REPO_ID, | |
RESULTS_REPO, | |
TOKEN, | |
) | |
from src.loaders import load_eval_results | |
from src.models import TaskType, model_hyperlink | |
from src.utils import remove_html, reset_rank, set_listeners, submit_results, update_metric, upload_file | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
try: | |
if os.environ.get("LOCAL_MODE", False): | |
print("Loading the data") | |
snapshot_download( | |
repo_id=RESULTS_REPO, | |
local_dir=EVAL_RESULTS_PATH, | |
repo_type="dataset", | |
tqdm_class=None, | |
etag_timeout=30, | |
token=TOKEN, | |
) | |
else: | |
print("Running in local mode") | |
except Exception: | |
print("failed to download") | |
restart_space() | |
global ds_dict | |
ds_dict = load_eval_results(EVAL_RESULTS_PATH) | |
global datastore | |
datastore = ds_dict[LATEST_BENCHMARK_VERSION] | |
def update_qa_metric( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp: bool, | |
): | |
global datastore | |
return update_metric( | |
datastore, | |
TaskType.qa, | |
metric, | |
domains, | |
langs, | |
reranking_model, | |
query, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
def update_doc_metric( | |
metric: str, | |
domains: list, | |
langs: list, | |
reranking_model: list, | |
query: str, | |
show_anonymous: bool, | |
show_revision_and_timestamp, | |
): | |
global datastore | |
return update_metric( | |
datastore, | |
TaskType.long_doc, | |
metric, | |
domains, | |
langs, | |
reranking_model, | |
query, | |
show_anonymous, | |
show_revision_and_timestamp, | |
) | |
def update_datastore(version): | |
global datastore | |
global ds_dict | |
if datastore.version != version: | |
print(f"updated data version: {datastore.version} -> {version}") | |
datastore = ds_dict[version] | |
else: | |
print(f"current data version: {datastore.version}") | |
return datastore | |
def update_qa_domains(version): | |
datastore = update_datastore(version) | |
domain_elem = get_domain_dropdown(QABenchmarks[datastore.slug]) | |
return domain_elem | |
def update_doc_domains(version): | |
datastore = update_datastore(version) | |
domain_elem = get_domain_dropdown(LongDocBenchmarks[datastore.slug]) | |
return domain_elem | |
def update_qa_langs(version): | |
datastore = update_datastore(version) | |
lang_elem = get_language_dropdown(QABenchmarks[datastore.slug]) | |
return lang_elem | |
def update_doc_langs(version): | |
datastore = update_datastore(version) | |
lang_elem = get_language_dropdown(LongDocBenchmarks[datastore.slug]) | |
return lang_elem | |
def update_qa_models(version): | |
datastore = update_datastore(version) | |
model_elem = get_reranking_dropdown(datastore.reranking_models) | |
return model_elem | |
def update_qa_df_ret_rerank(version): | |
datastore = update_datastore(version) | |
return get_leaderboard_table(datastore.qa_fmt_df, datastore.qa_types) | |
def update_qa_hidden_df_ret_rerank(version): | |
datastore = update_datastore(version) | |
return get_leaderboard_table(datastore.qa_raw_df, datastore.qa_types, visible=False) | |
def update_doc_df_ret_rerank(version): | |
datastore = update_datastore(version) | |
return get_leaderboard_table(datastore.doc_fmt_df, datastore.doc_types) | |
def update_doc_hidden_df_ret_rerank(version): | |
datastore = update_datastore(version) | |
return get_leaderboard_table(datastore.doc_raw_df, datastore.doc_types, visible=False) | |
def filter_df_ret(df): | |
df_ret = df[df[COL_NAME_RERANKING_MODEL] == "NoReranker"] | |
df_ret = reset_rank(df_ret) | |
return df_ret | |
def update_qa_df_ret(version): | |
datastore = update_datastore(version) | |
df_ret = filter_df_ret(datastore.qa_fmt_df) | |
return get_leaderboard_table(df_ret, datastore.qa_types) | |
def update_qa_hidden_df_ret(version): | |
datastore = update_datastore(version) | |
df_ret_hidden = filter_df_ret(datastore.qa_raw_df) | |
return get_leaderboard_table(df_ret_hidden, datastore.qa_types, visible=False) | |
def update_doc_df_ret(version): | |
datastore = update_datastore(version) | |
df_ret = filter_df_ret(datastore.doc_fmt_df) | |
return get_leaderboard_table(df_ret, datastore.doc_types) | |
def update_doc_hidden_df_ret(version): | |
datastore = update_datastore(version) | |
df_ret_hidden = filter_df_ret(datastore.doc_raw_df) | |
return get_leaderboard_table(df_ret_hidden, datastore.doc_types, visible=False) | |
def filter_df_rerank(df): | |
df_rerank = df[df[COL_NAME_RETRIEVAL_MODEL] == BM25_LINK] | |
df_rerank = reset_rank(df_rerank) | |
return df_rerank | |
def update_qa_df_rerank(version): | |
datastore = update_datastore(version) | |
df_rerank = filter_df_rerank(datastore.qa_fmt_df) | |
return get_leaderboard_table(df_rerank, datastore.qa_types) | |
def update_qa_hidden_df_rerank(version): | |
datastore = update_datastore(version) | |
df_rerank_hidden = filter_df_rerank(datastore.qa_raw_df) | |
return get_leaderboard_table(df_rerank_hidden, datastore.qa_types, visible=False) | |
def update_doc_df_rerank(version): | |
datastore = update_datastore(version) | |
df_rerank = filter_df_rerank(datastore.doc_fmt_df) | |
return get_leaderboard_table(df_rerank, datastore.doc_types) | |
def update_doc_hidden_df_rerank(version): | |
datastore = update_datastore(version) | |
df_rerank_hidden = filter_df_rerank(datastore.doc_raw_df) | |
return get_leaderboard_table(df_rerank_hidden, datastore.doc_types, visible=False) | |
demo = gr.Blocks(css=custom_css) | |
BM25_LINK = model_hyperlink("https://github.com/castorini/pyserini", "BM25") | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("Results", elem_id="results-tab-table"): | |
with gr.Row(): | |
version = get_version_dropdown() | |
with gr.TabItem("QA", elem_id="qa-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
domains = get_domain_dropdown(QABenchmarks[datastore.slug]) | |
version.change(update_qa_domains, version, domains) | |
# select language | |
with gr.Row(): | |
langs = get_language_dropdown(QABenchmarks[datastore.slug]) | |
version.change(update_qa_langs, version, langs) | |
with gr.Column(): | |
# select the metric | |
metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_QA) | |
with gr.Row(): | |
show_anonymous = get_anonymous_checkbox() | |
with gr.Row(): | |
show_rev_ts = get_revision_and_ts_checkbox() | |
with gr.Tabs(elem_classes="tab-buttons") as sub_tabs: | |
with gr.TabItem("Retrieval + Reranking", id=10): | |
with gr.Row(): | |
# search retrieval models | |
with gr.Column(): | |
search_bar = get_search_bar() | |
# select reranking models | |
with gr.Column(): | |
models = get_reranking_dropdown(datastore.reranking_models) | |
version.change(update_qa_models, version, models) | |
# shown_table | |
qa_df_elem_ret_rerank = get_leaderboard_table(datastore.qa_fmt_df, datastore.qa_types) | |
version.change(update_qa_df_ret_rerank, version, qa_df_elem_ret_rerank) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
qa_df_elem_ret_rerank_hidden = get_leaderboard_table( | |
datastore.qa_raw_df, datastore.qa_types, visible=False | |
) | |
version.change(update_qa_hidden_df_ret_rerank, version, qa_df_elem_ret_rerank_hidden) | |
set_listeners( | |
TaskType.qa, | |
qa_df_elem_ret_rerank, | |
qa_df_elem_ret_rerank_hidden, | |
search_bar, | |
version, | |
domains, | |
langs, | |
models, | |
show_anonymous, | |
show_rev_ts, | |
) | |
# set metric listener | |
metric.change( | |
update_qa_metric, | |
[metric, domains, langs, models, search_bar, show_anonymous, show_rev_ts], | |
qa_df_elem_ret_rerank, | |
queue=True, | |
) | |
with gr.TabItem("Retrieval Only", id=11): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar_ret = get_search_bar() | |
with gr.Column(scale=1): | |
models_ret = get_noreranking_dropdown() | |
version.change(update_qa_models, version, models_ret) | |
_qa_df_ret = filter_df_ret(datastore.qa_fmt_df) | |
qa_df_elem_ret = get_leaderboard_table(_qa_df_ret, datastore.qa_types) | |
version.change(update_qa_df_ret, version, qa_df_elem_ret) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
_qa_df_ret_hidden = filter_df_ret(datastore.qa_raw_df) | |
qa_df_elem_ret_hidden = get_leaderboard_table( | |
_qa_df_ret_hidden, datastore.qa_types, visible=False | |
) | |
version.change(update_qa_hidden_df_ret, version, qa_df_elem_ret_hidden) | |
set_listeners( | |
TaskType.qa, | |
qa_df_elem_ret, | |
qa_df_elem_ret_hidden, | |
search_bar_ret, | |
version, | |
domains, | |
langs, | |
models_ret, | |
show_anonymous, | |
show_rev_ts, | |
) | |
metric.change( | |
update_qa_metric, | |
[ | |
metric, | |
domains, | |
langs, | |
models_ret, | |
search_bar_ret, | |
show_anonymous, | |
show_rev_ts, | |
], | |
qa_df_elem_ret, | |
queue=True, | |
) | |
with gr.TabItem("Reranking Only", id=12): | |
_qa_df_rerank = filter_df_rerank(datastore.qa_fmt_df) | |
qa_rerank_models = _qa_df_rerank[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
qa_models_rerank = get_reranking_dropdown(qa_rerank_models) | |
version.change(update_qa_models, version, qa_models_rerank) | |
with gr.Column(scale=1): | |
qa_search_bar_rerank = gr.Textbox(show_label=False, visible=False) | |
qa_df_elem_rerank = get_leaderboard_table(_qa_df_rerank, datastore.qa_types) | |
version.change(update_qa_df_rerank, version, qa_df_elem_rerank) | |
_qa_df_rerank_hidden = filter_df_rerank(datastore.qa_raw_df) | |
qa_df_elem_rerank_hidden = get_leaderboard_table( | |
_qa_df_rerank_hidden, datastore.qa_types, visible=False | |
) | |
version.change(update_qa_hidden_df_rerank, version, qa_df_elem_rerank_hidden) | |
set_listeners( | |
TaskType.qa, | |
qa_df_elem_rerank, | |
qa_df_elem_rerank_hidden, | |
qa_search_bar_rerank, | |
version, | |
domains, | |
langs, | |
qa_models_rerank, | |
show_anonymous, | |
show_rev_ts, | |
) | |
metric.change( | |
update_qa_metric, | |
[ | |
metric, | |
domains, | |
langs, | |
qa_models_rerank, | |
qa_search_bar_rerank, | |
show_anonymous, | |
show_rev_ts, | |
], | |
qa_df_elem_rerank, | |
queue=True, | |
) | |
with gr.TabItem("Long Doc", elem_id="long-doc-benchmark-tab-table", id=1): | |
with gr.Row(): | |
with gr.Column(min_width=320): | |
# select domain | |
with gr.Row(): | |
domains = get_domain_dropdown(LongDocBenchmarks[datastore.slug]) | |
version.change(update_doc_domains, version, domains) | |
# select language | |
with gr.Row(): | |
langs = get_language_dropdown(LongDocBenchmarks[datastore.slug]) | |
version.change(update_doc_langs, version, langs) | |
with gr.Column(): | |
# select the metric | |
with gr.Row(): | |
metric = get_metric_dropdown(METRIC_LIST, DEFAULT_METRIC_LONG_DOC) | |
with gr.Row(): | |
show_anonymous = get_anonymous_checkbox() | |
with gr.Row(): | |
show_rev_ts = get_revision_and_ts_checkbox() | |
with gr.Tabs(elem_classes="tab-buttons"): | |
with gr.TabItem("Retrieval + Reranking", id=20): | |
with gr.Row(): | |
with gr.Column(): | |
search_bar = get_search_bar() | |
with gr.Column(): | |
models = get_reranking_dropdown(datastore.reranking_models) | |
version.change(update_qa_models, version, models) | |
doc_df_elem_ret_rerank = get_leaderboard_table(datastore.doc_fmt_df, datastore.doc_types) | |
version.change(update_doc_df_ret_rerank, version, doc_df_elem_ret_rerank) | |
doc_df_elem_ret_rerank_hidden = get_leaderboard_table( | |
datastore.doc_raw_df, datastore.doc_types, visible=False | |
) | |
version.change(update_doc_hidden_df_ret_rerank, version, doc_df_elem_ret_rerank_hidden) | |
set_listeners( | |
TaskType.long_doc, | |
doc_df_elem_ret_rerank, | |
doc_df_elem_ret_rerank_hidden, | |
search_bar, | |
version, | |
domains, | |
langs, | |
models, | |
show_anonymous, | |
show_rev_ts, | |
) | |
# set metric listener | |
metric.change( | |
update_doc_metric, | |
[ | |
metric, | |
domains, | |
langs, | |
models, | |
search_bar, | |
show_anonymous, | |
show_rev_ts, | |
], | |
doc_df_elem_ret_rerank, | |
queue=True, | |
) | |
with gr.TabItem("Retrieval Only", id=21): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
search_bar_ret = get_search_bar() | |
with gr.Column(scale=1): | |
models_ret = get_noreranking_dropdown() | |
_doc_df_ret = filter_df_ret(datastore.doc_fmt_df) | |
doc_df_elem_ret = get_leaderboard_table(_doc_df_ret, datastore.doc_types) | |
version.change(update_doc_df_ret, version, doc_df_elem_ret) | |
_doc_df_ret_hidden = filter_df_ret(datastore.doc_raw_df) | |
doc_df_elem_ret_hidden = get_leaderboard_table( | |
_doc_df_ret_hidden, datastore.doc_types, visible=False | |
) | |
version.change(update_doc_hidden_df_ret, version, doc_df_elem_ret_hidden) | |
set_listeners( | |
TaskType.long_doc, | |
doc_df_elem_ret, | |
doc_df_elem_ret_hidden, | |
search_bar_ret, | |
version, | |
domains, | |
langs, | |
models_ret, | |
show_anonymous, | |
show_rev_ts, | |
) | |
metric.change( | |
update_doc_metric, | |
[ | |
metric, | |
domains, | |
langs, | |
models_ret, | |
search_bar_ret, | |
show_anonymous, | |
show_rev_ts, | |
], | |
doc_df_elem_ret, | |
queue=True, | |
) | |
with gr.TabItem("Reranking Only", id=22): | |
_doc_df_rerank = filter_df_rerank(datastore.doc_fmt_df) | |
doc_rerank_models = ( | |
_doc_df_rerank[COL_NAME_RERANKING_MODEL].apply(remove_html).unique().tolist() | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
doc_models_rerank = get_reranking_dropdown(doc_rerank_models) | |
with gr.Column(scale=1): | |
doc_search_bar_rerank = gr.Textbox(show_label=False, visible=False) | |
doc_df_elem_rerank = get_leaderboard_table(_doc_df_rerank, datastore.doc_types) | |
version.change(update_doc_df_rerank, version, doc_df_elem_rerank) | |
_doc_df_rerank_hidden = filter_df_rerank(datastore.doc_raw_df) | |
doc_df_elem_rerank_hidden = get_leaderboard_table( | |
_doc_df_rerank_hidden, datastore.doc_types, visible=False | |
) | |
version.change(update_doc_hidden_df_rerank, version, doc_df_elem_rerank_hidden) | |
set_listeners( | |
TaskType.long_doc, | |
doc_df_elem_rerank, | |
doc_df_elem_rerank_hidden, | |
doc_search_bar_rerank, | |
version, | |
domains, | |
langs, | |
doc_models_rerank, | |
show_anonymous, | |
show_rev_ts, | |
) | |
metric.change( | |
update_doc_metric, | |
[ | |
metric, | |
domains, | |
langs, | |
doc_models_rerank, | |
doc_search_bar_rerank, | |
show_anonymous, | |
show_rev_ts, | |
], | |
doc_df_elem_rerank, | |
queue=True, | |
) | |
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Textbox(label="Retrieval Method name") | |
with gr.Column(): | |
model_url = gr.Textbox(label="Retrieval Method URL") | |
with gr.Row(): | |
with gr.Column(): | |
reranking_model_name = gr.Textbox( | |
label="Reranking Model name", info="Optional", value="NoReranker" | |
) | |
with gr.Column(): | |
reranking_model_url = gr.Textbox(label="Reranking Model URL", info="Optional", value="") | |
with gr.Row(): | |
with gr.Column(): | |
benchmark_version = gr.Dropdown( | |
BENCHMARK_VERSION_LIST, | |
value=LATEST_BENCHMARK_VERSION, | |
interactive=True, | |
label="AIR-Bench Version (🟠NOTE: Select the version you want to submit to)", | |
) | |
with gr.Row(): | |
upload_button = gr.UploadButton("Click to upload search results", file_count="single") | |
with gr.Row(): | |
file_output = gr.File() | |
with gr.Row(): | |
is_anonymous = gr.Checkbox( | |
label="Nope. I want to submit anonymously 🥷", | |
value=False, | |
info="Do you want to shown on the leaderboard by default?", | |
) | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
with gr.Row(): | |
submission_result = gr.Markdown() | |
upload_button.upload( | |
upload_file, | |
[ | |
upload_button, | |
], | |
file_output, | |
) | |
submit_button.click( | |
submit_results, | |
[ | |
file_output, | |
model_name, | |
model_url, | |
reranking_model_name, | |
reranking_model_url, | |
benchmark_version, | |
is_anonymous, | |
], | |
submission_result, | |
show_progress="hidden", | |
) | |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text") | |
gr.Markdown(f"{CITATION_BUTTON_LABEL}\n\n{CITATION_BUTTON_TEXT}", elem_classes="markdown-text") | |
if __name__ == "__main__": | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40) | |
demo.launch() | |