Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
from collections import defaultdict | |
from dataclasses import dataclass | |
from typing import List, Optional | |
import pandas as pd | |
from src.benchmarks import get_safe_name | |
from src.display.column_names import COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL_LINK, \ | |
COL_NAME_RERANKING_MODEL_LINK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS | |
from src.display.formatting import make_clickable_model | |
class EvalResult: | |
""" | |
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different | |
domains, languages, and datasets | |
""" | |
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model]_[metric] | |
retrieval_model: str | |
reranking_model: str | |
results: list # results on all the benchmarks stored as dict | |
task: str | |
metric: str | |
timestamp: str = "" # submission timestamp | |
revision: str = "" | |
is_anonymous: bool = False | |
class FullEvalResult: | |
""" | |
Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks | |
""" | |
eval_name: str # name of the evaluation, [retrieval_model]_[reranking_model] | |
retrieval_model: str | |
reranking_model: str | |
retrieval_model_link: str | |
reranking_model_link: str | |
results: List[EvalResult] # results on all the EvalResults over different tasks and metrics. | |
timestamp: str = "" | |
revision: str = "" | |
is_anonymous: bool = False | |
def init_from_json_file(cls, json_filepath): | |
""" | |
Initiate from the result json file for a single model. | |
The json file will be written only when the status is FINISHED. | |
""" | |
with open(json_filepath) as fp: | |
model_data = json.load(fp) | |
# store all the results for different metrics and tasks | |
result_list = [] | |
retrieval_model_link = "" | |
reranking_model_link = "" | |
revision = "" | |
for item in model_data: | |
config = item.get("config", {}) | |
# eval results for different metrics | |
results = item.get("results", []) | |
retrieval_model_link = config["retrieval_model_link"] | |
if config["reranking_model_link"] is None: | |
reranking_model_link = "" | |
else: | |
reranking_model_link = config["reranking_model_link"] | |
eval_result = EvalResult( | |
eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}", | |
retrieval_model=config["retrieval_model"], | |
reranking_model=config["reranking_model"], | |
results=results, | |
task=config["task"], | |
metric=config["metric"], | |
timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"), | |
revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"), | |
is_anonymous=config.get("is_anonymous", False) | |
) | |
result_list.append(eval_result) | |
return cls( | |
eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}", | |
retrieval_model=result_list[0].retrieval_model, | |
reranking_model=result_list[0].reranking_model, | |
retrieval_model_link=retrieval_model_link, | |
reranking_model_link=reranking_model_link, | |
results=result_list, | |
timestamp=result_list[0].timestamp, | |
revision=result_list[0].revision, | |
is_anonymous=result_list[0].is_anonymous | |
) | |
def to_dict(self, task='qa', metric='ndcg_at_3') -> List: | |
""" | |
Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI | |
""" | |
results = defaultdict(dict) | |
for eval_result in self.results: | |
if eval_result.metric != metric: | |
continue | |
if eval_result.task != task: | |
continue | |
results[eval_result.eval_name]["eval_name"] = eval_result.eval_name | |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = ( | |
make_clickable_model(self.retrieval_model, self.retrieval_model_link)) | |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = ( | |
make_clickable_model(self.reranking_model, self.reranking_model_link)) | |
results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link | |
results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link | |
results[eval_result.eval_name][COL_NAME_REVISION] = self.revision | |
results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp | |
results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous | |
# print(f'result loaded: {eval_result.eval_name}') | |
for result in eval_result.results: | |
# add result for each domain, language, and dataset | |
domain = result["domain"] | |
lang = result["lang"] | |
dataset = result["dataset"] | |
value = result["value"] * 100 | |
if dataset == 'default': | |
benchmark_name = f"{domain}_{lang}" | |
else: | |
benchmark_name = f"{domain}_{lang}_{dataset}" | |
results[eval_result.eval_name][get_safe_name(benchmark_name)] = value | |
return [v for v in results.values()] | |
class LeaderboardDataStore: | |
raw_data: Optional[list] | |
raw_df_qa: Optional[pd.DataFrame] | |
raw_df_long_doc: Optional[pd.DataFrame] | |
leaderboard_df_qa: Optional[pd.DataFrame] | |
leaderboard_df_long_doc: Optional[pd.DataFrame] | |
reranking_models: Optional[list] | |
types_qa: Optional[list] | |
types_long_doc: Optional[list] | |