Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,865 Bytes
649e0fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os.path
from typing import List
import pandas as pd
from src.benchmarks import DEFAULT_METRIC_QA, DEFAULT_METRIC_LONG_DOC
from src.display.column_names import COL_NAME_REVISION, COL_NAME_IS_ANONYMOUS, \
COL_NAME_TIMESTAMP
from src.models import FullEvalResult, LeaderboardDataStore
from src.utils import get_default_cols, get_leaderboard_df
pd.options.mode.copy_on_write = True
def load_raw_eval_results(results_path: str) -> List[FullEvalResult]:
"""
Load the evaluation results from a json file
"""
model_result_filepaths = []
for root, dirs, files in os.walk(results_path):
if len(files) == 0:
continue
# select the latest results
for file in files:
if not (file.startswith("results") and file.endswith(".json")):
print(f'skip {file}')
continue
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# create evaluation results
try:
eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
except UnicodeDecodeError as e:
print(f"loading file failed. {model_result_filepath}")
continue
print(f'file loaded: {model_result_filepath}')
timestamp = eval_result.timestamp
eval_results[timestamp] = eval_result
results = []
for k, v in eval_results.items():
try:
v.to_dict()
results.append(v)
except KeyError:
print(f"loading failed: {k}")
continue
return results
def load_leaderboard_datastore(file_path) -> LeaderboardDataStore:
lb_data_store = LeaderboardDataStore(None, None, None, None, None, None, None, None)
lb_data_store.raw_data = load_raw_eval_results(file_path)
print(f'raw data: {len(lb_data_store.raw_data)}')
lb_data_store.raw_df_qa = get_leaderboard_df(
lb_data_store.raw_data, task='qa', metric=DEFAULT_METRIC_QA)
lb_data_store.leaderboard_df_qa = lb_data_store.raw_df_qa.copy()
# leaderboard_df_qa = leaderboard_df_qa[has_no_nan_values(df, _benchmark_cols)]
print(f'QA data loaded: {lb_data_store.raw_df_qa.shape}')
shown_columns_qa, types_qa = get_default_cols(
'qa', lb_data_store.leaderboard_df_qa.columns, add_fix_cols=True)
lb_data_store.types_qa = types_qa
lb_data_store.leaderboard_df_qa = \
lb_data_store.leaderboard_df_qa[~lb_data_store.leaderboard_df_qa[COL_NAME_IS_ANONYMOUS]][shown_columns_qa]
lb_data_store.leaderboard_df_qa.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
lb_data_store.raw_df_long_doc = get_leaderboard_df(
lb_data_store.raw_data, task='long-doc', metric=DEFAULT_METRIC_LONG_DOC)
print(f'Long-Doc data loaded: {len(lb_data_store.raw_df_long_doc)}')
lb_data_store.leaderboard_df_long_doc = lb_data_store.raw_df_long_doc.copy()
shown_columns_long_doc, types_long_doc = get_default_cols(
'long-doc', lb_data_store.leaderboard_df_long_doc.columns, add_fix_cols=True)
lb_data_store.types_long_doc = types_long_doc
lb_data_store.leaderboard_df_long_doc = \
lb_data_store.leaderboard_df_long_doc[~lb_data_store.leaderboard_df_long_doc[COL_NAME_IS_ANONYMOUS]][
shown_columns_long_doc]
lb_data_store.leaderboard_df_long_doc.drop([COL_NAME_REVISION, COL_NAME_TIMESTAMP], axis=1, inplace=True)
lb_data_store.reranking_models = sorted(
list(frozenset([eval_result.reranking_model for eval_result in lb_data_store.raw_data])))
return lb_data_store
def load_eval_results(file_path: str):
output = {}
versions = ("AIR-Bench_24.04",)
for version in versions:
fn = f"{file_path}/{version}"
output[version] = load_leaderboard_datastore(fn)
return output
|