TA commited on
Commit
b768e87
·
verified ·
1 Parent(s): 1924ec9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -26
app.py CHANGED
@@ -5,7 +5,6 @@ import requests
5
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
  TITLE = "Image Prompter"
7
  EXAMPLE_INPUT = "A Man Riding A Horse in Space"
8
- zephyr_3b = "https://huggingface.co/chat/models/llama/llama-3b"
9
 
10
  HF_TOKEN = os.getenv("HF_TOKEN")
11
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
@@ -14,41 +13,32 @@ def build_input_prompt(message, chatbot, system_prompt):
14
  """
15
  Constructs the input prompt string from the chatbot interactions and the current message.
16
  """
17
- input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
18
- for interaction in chatbot:
19
- input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
20
-
21
- input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
22
  return input_prompt
23
 
24
 
25
- def post_request_beta(payload):
26
  """
27
- Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
28
  """
29
- response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
30
  response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
31
  return response.json()
32
 
33
 
34
- def predict_beta(message, chatbot=[], system_prompt=""):
35
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
36
  data = {
37
- "inputs": input_prompt
 
 
 
38
  }
39
 
40
  try:
41
- response_data = post_request_beta(data)
42
- json_obj = response_data[0]
43
-
44
- if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
45
- bot_message = json_obj['generated_text']
46
- return bot_message
47
- elif 'error' in json_obj:
48
- raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
49
- else:
50
- warning_msg = f"Unexpected response: {json_obj}"
51
- raise gr.Error(warning_msg)
52
  except requests.HTTPError as e:
53
  error_msg = f"Request failed with status code {e.response.status_code}"
54
  raise gr.Error(error_msg)
@@ -56,10 +46,10 @@ def predict_beta(message, chatbot=[], system_prompt=""):
56
  error_msg = f"Failed to decode response as JSON: {str(e)}"
57
  raise gr.Error(error_msg)
58
 
 
59
  def test_preview_chatbot(message, history):
60
- response = predict_beta(message, history, SYSTEM_PROMPT)
61
- text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
62
- response = response[text_start:]
63
  return response
64
 
65
 
@@ -71,4 +61,12 @@ Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}
71
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
72
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
73
 
74
- demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
 
 
 
 
 
 
 
 
 
5
  SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
  TITLE = "Image Prompter"
7
  EXAMPLE_INPUT = "A Man Riding A Horse in Space"
 
8
 
9
  HF_TOKEN = os.getenv("HF_TOKEN")
10
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
 
13
  """
14
  Constructs the input prompt string from the chatbot interactions and the current message.
15
  """
16
+ input_prompt = system_prompt + "\n\n" + message
 
 
 
 
17
  return input_prompt
18
 
19
 
20
+ def post_request(model_url, payload):
21
  """
22
+ Sends a POST request to the specified model URL and returns the JSON response.
23
  """
24
+ response = requests.post(model_url, headers=HEADERS, json=payload)
25
  response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
26
  return response.json()
27
 
28
 
29
+ def predict(model_url, message, chatbot=[], system_prompt=""):
30
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
31
  data = {
32
+ "prompt": input_prompt,
33
+ "max_new_tokens": 256,
34
+ "temperature": 0.7,
35
+ "top_p": 0.95
36
  }
37
 
38
  try:
39
+ response_data = post_request(model_url, data)
40
+ bot_message = response_data["generated_text"]
41
+ return bot_message
 
 
 
 
 
 
 
 
42
  except requests.HTTPError as e:
43
  error_msg = f"Request failed with status code {e.response.status_code}"
44
  raise gr.Error(error_msg)
 
46
  error_msg = f"Failed to decode response as JSON: {str(e)}"
47
  raise gr.Error(error_msg)
48
 
49
+
50
  def test_preview_chatbot(message, history):
51
+ model_url = "https://huggingface.co/chat/models/llama/llama-3b"
52
+ response = predict(model_url, message, history, SYSTEM_PROMPT)
 
53
  return response
54
 
55
 
 
61
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
62
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
63
 
64
+ demo = gr.Interface(
65
+ fn=test_preview_chatbot,
66
+ inputs=["text", "state"],
67
+ outputs="text",
68
+ title=TITLE,
69
+ description="Image Prompter"
70
+ )
71
+
72
+ demo.launch()