Spaces:
Runtime error
Runtime error
File size: 3,236 Bytes
edf2a04 ebe55ae dc647b3 651516a 534795e fb4f3f2 ff5d575 fb4f3f2 5becc54 fb4f3f2 b0e1b1f f1e4e34 fb4f3f2 f1e4e34 fb4f3f2 f1e4e34 fb4f3f2 f1e4e34 fb4f3f2 b0e1b1f fb4f3f2 b0e1b1f fb4f3f2 f1e4e34 fb4f3f2 b0e1b1f fb4f3f2 534795e f1e4e34 fb4f3f2 f1e4e34 534795e fb4f3f2 b0e1b1f fb4f3f2 534795e f1e4e34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
import os
import requests
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Man Riding A Horse in Space"
import gradio as gr
import os
import requests
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def build_input_prompt(message, chatbot, system_prompt):
"""
Constructs the input prompt string from the chatbot interactions and the current message.
"""
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
return input_prompt
def post_request_beta(payload):
"""
Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
"""
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
return response.json()
def predict_beta(message, chatbot=[], system_prompt=""):
input_prompt = build_input_prompt(message, chatbot, system_prompt)
data = {
"inputs": input_prompt
}
try:
response_data = post_request_beta(data)
json_obj = response_data[0]
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
bot_message = json_obj['generated_text']
return bot_message
elif 'error' in json_obj:
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
else:
warning_msg = f"Unexpected response: {json_obj}"
raise gr.Error(warning_msg)
except requests.HTTPError as e:
error_msg = f"Request failed with status code {e.response.status_code}"
raise gr.Error(error_msg)
except json.JSONDecodeError as e:
error_msg = f"Failed to decode response as JSON: {str(e)}"
raise gr.Error(error_msg)
def test_preview_chatbot(message, history):
response = predict_beta(message, history, SYSTEM_PROMPT)
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
response = response[text_start:]
return response
welcome_preview_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
"{EXAMPLE_INPUT}"
"""
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
demo.launch(share=True) |