Spaces:
Runtime error
Runtime error
File size: 3,029 Bytes
edf2a04 122320e ebe55ae dc647b3 fb4f3f2 ff5d575 fb4f3f2 5becc54 fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e fb4f3f2 122320e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import gradio as gr
import os
import requests
import json
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."
html_temp = """
<div style="position: absolute; top: 0; right: 0;">
<img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width:100px;height:100px;'>
</div>
"""
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def build_input_prompt(message, chatbot, system_prompt):
input_prompt = "\n" + system_prompt + "</s>\n\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
input_prompt = input_prompt + str(message) + "</s>\n"
return input_prompt
def post_request_beta(payload):
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
response.raise_for_status()
return response.json()
def predict_beta(message, chatbot=[], system_prompt=""):
input_prompt = build_input_prompt(message, chatbot, system_prompt)
data = {"inputs": input_prompt}
try:
response_data = post_request_beta(data)
json_obj = response_data[0]
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
bot_message = json_obj['generated_text']
return bot_message
elif 'error' in json_obj:
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
else:
warning_msg = f"Unexpected response: {json_obj}"
raise gr.Error(warning_msg)
except requests.HTTPError as e:
error_msg = f"Request failed with status code {e.response.status_code}"
raise gr.Error(error_msg)
except json.JSONDecodeError as e:
error_msg = f"Failed to decode response as JSON: {str(e)}"
raise gr.Error(error_msg)
def chat_interface(message, history):
response = predict_beta(message, history, SYSTEM_PROMPT)
text_start = response.rfind("", ) + len("")
response = response[text_start:]
return response
welcome_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
"{EXAMPLE_INPUT}"
"""
chatbot_setup = gr.Chatbot(layout="panel", value=[(None, welcome_message)])
textbox_setup = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
gr.Interface(fn=chat_interface, inputs=textbox_setup, outputs=chatbot_setup, live=True, share=True).launch()
|