File size: 3,029 Bytes
edf2a04
 
 
122320e
ebe55ae
dc647b3
 
 
 
 
 
 
 
 
 
fb4f3f2
ff5d575
fb4f3f2
 
5becc54
fb4f3f2
122320e
fb4f3f2
122320e
fb4f3f2
122320e
fb4f3f2
 
 
 
122320e
fb4f3f2
 
 
 
122320e
fb4f3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122320e
fb4f3f2
122320e
fb4f3f2
 
 
122320e
fb4f3f2
 
 
 
 
122320e
 
fb4f3f2
122320e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import os
import requests
import json

SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."

html_temp = """
<div style="position: absolute; top: 0; right: 0;">
    <img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width:100px;height:100px;'>
</div>
"""

zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"

HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def build_input_prompt(message, chatbot, system_prompt):
    input_prompt = "\n" + system_prompt + "</s>\n\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"

    input_prompt = input_prompt + str(message) + "</s>\n"
    return input_prompt

def post_request_beta(payload):
    response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
    response.raise_for_status()
    return response.json()

def predict_beta(message, chatbot=[], system_prompt=""):
    input_prompt = build_input_prompt(message, chatbot, system_prompt)
    data = {"inputs": input_prompt}

    try:
        response_data = post_request_beta(data)
        json_obj = response_data[0]
        
        if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
            bot_message = json_obj['generated_text']
            return bot_message
        elif 'error' in json_obj:
            raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
        else:
            warning_msg = f"Unexpected response: {json_obj}"
            raise gr.Error(warning_msg)
    except requests.HTTPError as e:
        error_msg = f"Request failed with status code {e.response.status_code}"
        raise gr.Error(error_msg)
    except json.JSONDecodeError as e:
        error_msg = f"Failed to decode response as JSON: {str(e)}"
        raise gr.Error(error_msg)

def chat_interface(message, history):
    response = predict_beta(message, history, SYSTEM_PROMPT)
    text_start = response.rfind("", ) + len("")
    response = response[text_start:]
    return response

welcome_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like: 

"{EXAMPLE_INPUT}"
"""

chatbot_setup = gr.Chatbot(layout="panel", value=[(None, welcome_message)])
textbox_setup = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)

gr.Interface(fn=chat_interface, inputs=textbox_setup, outputs=chatbot_setup, live=True, share=True).launch()