Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# [1] Core Imports (Updated Packages)
|
2 |
+
import gradio as gr
|
3 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
+
from langchain_huggingface import HuggingFacePipeline
|
5 |
+
from langchain_community.document_loaders import UnstructuredURLLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_chroma import Chroma
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain.chains.combine_documents.stuff import create_stuff_documents_chain
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
12 |
+
import nltk
|
13 |
+
import validators
|
14 |
+
|
15 |
+
nltk.download('punkt', quiet=True)
|
16 |
+
|
17 |
+
# [2] Initialize Components
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
19 |
+
chunk_size=1000,
|
20 |
+
chunk_overlap=100,
|
21 |
+
separators=["\n\n", "\n"]
|
22 |
+
)
|
23 |
+
|
24 |
+
# Updated embeddings initialization
|
25 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
26 |
+
|
27 |
+
# [3] Model Setup
|
28 |
+
MODEL_NAME = "google/flan-t5-large"
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
30 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
31 |
+
|
32 |
+
pipe = pipeline(
|
33 |
+
"text2text-generation",
|
34 |
+
model=model,
|
35 |
+
tokenizer=tokenizer,
|
36 |
+
max_new_tokens=800,
|
37 |
+
temperature=0.6,
|
38 |
+
do_sample=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Updated pipeline wrapper
|
42 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
43 |
+
|
44 |
+
# [4] Prompt Template
|
45 |
+
prompt_template = ChatPromptTemplate.from_messages([
|
46 |
+
("system", "Generate a clear concise most simplest understanding language answer in about 3-5 bullet or more if you need more to explain points, using ONLY the context below.\n\nContext: {context}"),
|
47 |
+
("human", "{input}")
|
48 |
+
])
|
49 |
+
|
50 |
+
# [5] Processing Function
|
51 |
+
def process_inputs(urls_str, question):
|
52 |
+
try:
|
53 |
+
print("\n=== New Request ===")
|
54 |
+
|
55 |
+
# Validate inputs
|
56 |
+
if not urls_str.strip() or not question.strip():
|
57 |
+
print("Missing inputs")
|
58 |
+
return "β Please provide both URLs and a question"
|
59 |
+
|
60 |
+
urls = [url.strip() for url in urls_str.split(',') if url.strip()]
|
61 |
+
print(f"Processing {len(urls)} URLs")
|
62 |
+
|
63 |
+
# Validate URLs
|
64 |
+
for url in urls:
|
65 |
+
if not validators.url(url):
|
66 |
+
print(f"Invalid URL: {url}")
|
67 |
+
return f"β Invalid URL format: {url}"
|
68 |
+
|
69 |
+
# Load documents
|
70 |
+
try:
|
71 |
+
loader = UnstructuredURLLoader(urls=urls)
|
72 |
+
docs = loader.load()
|
73 |
+
print(f"Loaded {len(docs)} documents")
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Document load failed: {str(e)}")
|
76 |
+
return f"β Failed to load documents: {str(e)}"
|
77 |
+
|
78 |
+
if not docs:
|
79 |
+
print("No content found")
|
80 |
+
return "β No content found in the provided URLs"
|
81 |
+
|
82 |
+
# Process documents
|
83 |
+
unique_content = list({doc.page_content.strip(): doc for doc in docs}.values())
|
84 |
+
split_docs = text_splitter.split_documents(unique_content)
|
85 |
+
print(f"Split into {len(split_docs)} chunks")
|
86 |
+
|
87 |
+
# Create vector store
|
88 |
+
try:
|
89 |
+
vectorstore = Chroma.from_documents(
|
90 |
+
documents=split_docs,
|
91 |
+
embedding=embeddings
|
92 |
+
)
|
93 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
94 |
+
print("Vector store created")
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Vector store error: {str(e)}")
|
97 |
+
return f"β Vector store error: {str(e)}"
|
98 |
+
|
99 |
+
# Create chain
|
100 |
+
try:
|
101 |
+
print("Creating RAG chain")
|
102 |
+
rag_chain = create_retrieval_chain(
|
103 |
+
retriever,
|
104 |
+
create_stuff_documents_chain(
|
105 |
+
llm=llm,
|
106 |
+
prompt=prompt_template
|
107 |
+
)
|
108 |
+
)
|
109 |
+
|
110 |
+
print(f"Processing question: {question}")
|
111 |
+
response = rag_chain.invoke({"input": question})
|
112 |
+
print("Answer generated successfully")
|
113 |
+
|
114 |
+
return response["answer"]
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Generation error: {str(e)}")
|
118 |
+
return f"β Generation error: {str(e)}"
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Unexpected error: {str(e)}")
|
122 |
+
return f"β Unexpected error: {str(e)}"
|
123 |
+
|
124 |
+
# [6] Gradio Interface (Fixed parameters)
|
125 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
126 |
+
gr.Markdown("# RAG Chat Interface")
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column():
|
130 |
+
url_input = gr.Textbox(
|
131 |
+
label="Paste URLs (comma-separated)",
|
132 |
+
placeholder="https://example.com, https://another-site.org\nSome websites may not work as they won't allow to fetch data from their site.\nTry other websites in that case.",
|
133 |
+
lines=3
|
134 |
+
)
|
135 |
+
question_input = gr.Textbox(
|
136 |
+
label="Your Question",
|
137 |
+
placeholder="Type your question here...",
|
138 |
+
lines=3
|
139 |
+
)
|
140 |
+
submit_btn = gr.Button("Get Answer", variant="primary")
|
141 |
+
|
142 |
+
answer_output = gr.Textbox(
|
143 |
+
label="Generated Answer",
|
144 |
+
interactive=False,
|
145 |
+
lines=10 # Removed autoscroll=True
|
146 |
+
)
|
147 |
+
|
148 |
+
gr.Examples(
|
149 |
+
examples=[
|
150 |
+
[
|
151 |
+
"https://generativeai.net/, https://www.ibm.com/think/topics/generative-ai",
|
152 |
+
"What are the key benefits of generative AI?"
|
153 |
+
]
|
154 |
+
],
|
155 |
+
inputs=[url_input, question_input]
|
156 |
+
)
|
157 |
+
|
158 |
+
submit_btn.click(
|
159 |
+
fn=process_inputs,
|
160 |
+
inputs=[url_input, question_input],
|
161 |
+
outputs=answer_output
|
162 |
+
)
|
163 |
+
|
164 |
+
# [7] Launch
|
165 |
+
if __name__ == "__main__":
|
166 |
+
demo.launch()
|