AI-trainer1's picture
Create app.py
e615195 verified
# [1] Core Imports (Updated Packages)
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFacePipeline
from langchain_community.document_loaders import UnstructuredURLLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents.stuff import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import nltk
import validators
nltk.download('punkt', quiet=True)
# [2] Initialize Components
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
separators=["\n\n", "\n"]
)
# Updated embeddings initialization
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# [3] Model Setup
MODEL_NAME = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=800,
temperature=0.6,
do_sample=True
)
# Updated pipeline wrapper
llm = HuggingFacePipeline(pipeline=pipe)
# [4] Prompt Template
prompt_template = ChatPromptTemplate.from_messages([
("system", "Generate a clear concise most simplest understanding language answer in about 3-5 bullet or more if you need more to explain points, using ONLY the context below.\n\nContext: {context}"),
("human", "{input}")
])
# [5] Processing Function
def process_inputs(urls_str, question):
try:
print("\n=== New Request ===")
# Validate inputs
if not urls_str.strip() or not question.strip():
print("Missing inputs")
return "❌ Please provide both URLs and a question"
urls = [url.strip() for url in urls_str.split(',') if url.strip()]
print(f"Processing {len(urls)} URLs")
# Validate URLs
for url in urls:
if not validators.url(url):
print(f"Invalid URL: {url}")
return f"❌ Invalid URL format: {url}"
# Load documents
try:
loader = UnstructuredURLLoader(urls=urls)
docs = loader.load()
print(f"Loaded {len(docs)} documents")
except Exception as e:
print(f"Document load failed: {str(e)}")
return f"❌ Failed to load documents: {str(e)}"
if not docs:
print("No content found")
return "❌ No content found in the provided URLs"
# Process documents
unique_content = list({doc.page_content.strip(): doc for doc in docs}.values())
split_docs = text_splitter.split_documents(unique_content)
print(f"Split into {len(split_docs)} chunks")
# Create vector store
try:
vectorstore = Chroma.from_documents(
documents=split_docs,
embedding=embeddings
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
print("Vector store created")
except Exception as e:
print(f"Vector store error: {str(e)}")
return f"❌ Vector store error: {str(e)}"
# Create chain
try:
print("Creating RAG chain")
rag_chain = create_retrieval_chain(
retriever,
create_stuff_documents_chain(
llm=llm,
prompt=prompt_template
)
)
print(f"Processing question: {question}")
response = rag_chain.invoke({"input": question})
print("Answer generated successfully")
return response["answer"]
except Exception as e:
print(f"Generation error: {str(e)}")
return f"❌ Generation error: {str(e)}"
except Exception as e:
print(f"Unexpected error: {str(e)}")
return f"❌ Unexpected error: {str(e)}"
# [6] Gradio Interface (Fixed parameters)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# RAG Chat Interface")
with gr.Row():
with gr.Column():
url_input = gr.Textbox(
label="Paste URLs (comma-separated)",
placeholder="https://example.com, https://another-site.org\nSome websites may not work as they won't allow to fetch data from their site.\nTry other websites in that case.",
lines=3
)
question_input = gr.Textbox(
label="Your Question",
placeholder="Type your question here...",
lines=3
)
submit_btn = gr.Button("Get Answer", variant="primary")
answer_output = gr.Textbox(
label="Generated Answer",
interactive=False,
lines=10 # Removed autoscroll=True
)
gr.Examples(
examples=[
[
"https://generativeai.net/, https://www.ibm.com/think/topics/generative-ai",
"What are the key benefits of generative AI?"
]
],
inputs=[url_input, question_input]
)
submit_btn.click(
fn=process_inputs,
inputs=[url_input, question_input],
outputs=answer_output
)
# [7] Launch
if __name__ == "__main__":
demo.launch()