AI-trainer1's picture
Update app.py
5a1dbb0 verified
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_chroma import Chroma
from langchain_community.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
import os
from dotenv import load_dotenv
from helper import SYSTEM_PROMPT
from langchain_google_genai import GoogleGenerativeAIEmbeddings
# from langchain.embeddings import HuggingFaceEmbeddings # open source free embedding
load_dotenv()
class PDFQAProcessor:
SYSTEM_PROMPT = SYSTEM_PROMPT
llm = ChatGroq(
# model_name="deepseek-r1-distill-llama-70b",
model_name="llama3-70b-8192",
temperature=0.1,
max_tokens=3000,
api_key = os.getenv('GROQ_API_KEY')
)
# Setup RAG chain
prompt = ChatPromptTemplate.from_messages([
("system", SYSTEM_PROMPT),
("human", "{input}"),
])
question_answer_chain = create_stuff_documents_chain(llm, prompt)
# EMBEDDING_MODEL = "intfloat/e5-large-v2"
# embeddings = HuggingFaceEmbeddings(
# model_name=EMBEDDING_MODEL,
# model_kwargs={'device': 'cpu'},
# encode_kwargs={'normalize_embeddings': True}
# )
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
CHUNK_SIZE = 700
CHUNK_OVERLAP = 150
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE,chunk_overlap = CHUNK_OVERLAP)
# persist_directory="./chroma_db"
def __init__(self):
self.vectorstore = None
self.retriever = None
def process_pdfs(self, pdf_files):
"""Processing PDF files and creating vector store"""
if not pdf_files:
return "Please upload PDF files first!"
try:
# Load and split documents
docs = []
for pdf_file in pdf_files:
loader = PyPDFLoader(pdf_file.name)
docs.extend(loader.load())
splits = self.text_splitter.split_documents(docs)
# # Create vector store
# self.vectorstore = Chroma.from_documents(
# documents=splits,
# embedding=self.embeddings,
# # persist_directory = self.persist_directory
# )
# Replace Chroma with:
self.vectorstore = FAISS.from_documents(
splits,
self.embeddings
)
self.retriever = self.vectorstore.as_retriever(search_kwargs={"k": 10})
return "PDFs processed successfully! Ask your questions now."
except Exception as e:
return f"Error processing PDFs: {str(e)}"
def answer_question(self, question):
"""Handling question answering"""
if not self.retriever:
return "Please process PDFs first!", None
try:
# Initialize LLM
rag_chain = create_retrieval_chain(self.retriever, self.question_answer_chain)
response = rag_chain.invoke({"input": question})
# final_response = response["answer"] + "\n\nSources\n\n"
# for info in response["context"]:
# final_response += info.page_content + "\nSource of Info: " + info.metadata['source'] + "\nAt Page No: " + info.metadata['page_label']+"\n\n"
final_response = response["answer"] + "\n\n### Sources\n\n" # Changed to use markdown formatting
for info in response["context"]:
final_response += (
f"{info.page_content}<br>" # Changed to use markdown bold formatting
f"Source of Info: {info.metadata['source']}<br>"
f"At Page No: {info.metadata['page_label']}<br><br>"
)
return final_response
except Exception as e:
return f"Error answering question: {str(e)}", None
processor = PDFQAProcessor()
with gr.Blocks(title="PDF QA Assistant") as demo:
with gr.Tab("Upload PDFs"):
file_input = gr.Files(label="Upload PDFs", file_types=[".pdf"])
process_btn = gr.Button("Process PDFs")
status_output = gr.Textbox(label="Processing Status")
with gr.Tab("Ask Questions"):
question_input = gr.Textbox(label="Your Question")
# answer_output = gr.Textbox(label="Answer", interactive=False)
answer_output = gr.Markdown(label="Answer")
ask_btn = gr.Button("Ask Question")
process_btn.click(
processor.process_pdfs,
inputs=file_input,
outputs=status_output
)
# QA workflow
ask_btn.click(
processor.answer_question,
inputs=question_input,
outputs=[answer_output]
)
if __name__ == "__main__":
demo.launch()