awacke1 commited on
Commit
9412e3a
ยท
1 Parent(s): 0ac3298

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -121
app.py CHANGED
@@ -1,18 +1,8 @@
1
  import streamlit as st
2
  import json
3
  import pandas as pd
4
- import plotly.express as px
5
- import seaborn as sns
6
- import matplotlib.pyplot as plt
7
  import streamlit.components.v1 as components
8
 
9
- # Global variable to hold selected row index
10
- selected_row_index = None
11
-
12
- # Initialize an empty DataFrame
13
- filtered_data = pd.DataFrame()
14
-
15
-
16
  # Function to load JSONL file into a DataFrame
17
  def load_jsonl(file_path):
18
  data = []
@@ -25,132 +15,74 @@ def load_jsonl(file_path):
25
  def filter_by_keyword(df, keyword):
26
  return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)]
27
 
28
- # Streamlit App
29
- st.title("Medical Licensing Exam Explorer with Speech Synthesis, Plotly and Seaborn ๐Ÿ“Š")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  # Dropdown for file selection
32
- file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"])
33
  st.write(f"You selected: {file_option}")
34
 
35
- # Load the data
36
- small_data = load_jsonl("usmle_16.2MB.jsonl")
37
- large_data = load_jsonl("usmle_2.08MB.jsonl")
38
 
39
- # Show filtered data grid
40
- if file_option == "small_file.jsonl":
41
- data = small_data
42
- else:
43
- data = large_data
44
 
45
- # Text input for search keyword
46
- search_keyword = st.text_input("Enter a keyword to filter data (e.g., Heart, Lung, Pain, Memory):")
47
 
48
- # Button to trigger search
49
- if st.button("Search"):
50
- filtered_data = filter_by_keyword(data, search_keyword)
51
- st.write(f"Filtered Dataset by '{search_keyword}'")
52
- selected_data = st.dataframe(filtered_data)
 
 
 
 
53
 
 
 
 
 
 
 
54
 
55
-
56
- def generate_html_with_textarea(text_to_speak):
57
- return f'''
58
- <!DOCTYPE html>
59
- <html>
60
- <head>
61
- <title>Read It Aloud</title>
62
- <script type="text/javascript">
63
- function readAloud() {{
64
- const text = document.getElementById("textArea").value;
65
- const speech = new SpeechSynthesisUtterance(text);
66
- window.speechSynthesis.speak(speech);
67
- }}
68
- </script>
69
- </head>
70
- <body>
71
- <h1>๐Ÿ”Š Read It Aloud</h1>
72
- <textarea id="textArea" rows="10" cols="80">
73
- {text_to_speak}
74
- </textarea>
75
- <br>
76
- <button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
77
- </body>
78
- </html>
79
- '''
80
-
81
- # Define your text passage
82
- text_passage = "A 60-year-old man is brought to the emergency department by police officers because he was acting strangely in public. The patient was found talking nonsensically to characters on cereal boxes in the store. Past medical history is significant for multiple hospitalizations for alcohol-related injuries and seizures. The patientโ€™s vital signs are within normal limits. Physical examination shows a disheveled male who is oriented to person, but not time or place. Neurologic examination shows nystagmus and severe gait ataxia. A T1/T2 MRI is performed and demonstrates evidence of damage to the mammillary bodies. The patient is given the appropriate treatment for recovering most of his cognitive functions. However, significant short-term memory deficits persist. The patient remembers events from his past such as the school and college he attended, his current job, and the names of family members quite well. Which of the following is the most likely diagnosis in this patient?"
83
-
84
- # Generate HTML code
85
- documentHTML5 = generate_html_with_textarea(text_passage)
86
-
87
-
88
  # Button to read all filtered rows
89
- if st.button("Read All Rows"):
90
  if not filtered_data.empty:
91
  html_blocks = []
92
  for idx, row in filtered_data.iterrows():
93
  question_text = row.get("question", "No question field")
94
- documentHTML5 = generate_html(question_text, "", idx)
95
  html_blocks.append(documentHTML5)
96
  all_html = ''.join(html_blocks)
97
  components.html(all_html, width=1280, height=1024)
98
  else:
99
- st.warning("No rows to read.")
100
-
101
-
102
- # Insert the HTML into Streamlit
103
- # Button to read all filtered rows
104
- if st.button("Read Aloud Text"):
105
- components.html(documentHTML5, width=1280, height=1024)
106
-
107
-
108
- # Plotly and Seaborn charts for EDA
109
- if st.button("Generate Charts"):
110
- st.subheader("Plotly Charts ๐Ÿ“ˆ")
111
-
112
- # 1. Scatter Plot
113
- fig = px.scatter(data, x=data.columns[0], y=data.columns[1])
114
- st.plotly_chart(fig)
115
-
116
- # 2. Line Plot
117
- fig = px.line(data, x=data.columns[0], y=data.columns[1])
118
- st.plotly_chart(fig)
119
-
120
- # 3. Bar Plot
121
- fig = px.bar(data, x=data.columns[0], y=data.columns[1])
122
- st.plotly_chart(fig)
123
-
124
- # 4. Histogram
125
- fig = px.histogram(data, x=data.columns[0])
126
- st.plotly_chart(fig)
127
-
128
- # 5. Box Plot
129
- fig = px.box(data, x=data.columns[0], y=data.columns[1])
130
- st.plotly_chart(fig)
131
-
132
- st.subheader("Seaborn Charts ๐Ÿ“Š")
133
-
134
- # 6. Violin Plot
135
- fig, ax = plt.subplots()
136
- sns.violinplot(x=data.columns[0], y=data.columns[1], data=data)
137
- st.pyplot(fig)
138
-
139
- # 7. Swarm Plot
140
- fig, ax = plt.subplots()
141
- sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data)
142
- st.pyplot(fig)
143
-
144
- # 8. Pair Plot
145
- fig = sns.pairplot(data)
146
- st.pyplot(fig)
147
-
148
- # 9. Heatmap
149
- fig, ax = plt.subplots()
150
- sns.heatmap(data.corr(), annot=True)
151
- st.pyplot(fig)
152
-
153
- # 10. Regplot (Regression Plot)
154
- fig, ax = plt.subplots()
155
- sns.regplot(x=data.columns[0], y=data.columns[1], data=data)
156
- st.pyplot(fig)
 
1
  import streamlit as st
2
  import json
3
  import pandas as pd
 
 
 
4
  import streamlit.components.v1 as components
5
 
 
 
 
 
 
 
 
6
  # Function to load JSONL file into a DataFrame
7
  def load_jsonl(file_path):
8
  data = []
 
15
  def filter_by_keyword(df, keyword):
16
  return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)]
17
 
18
+ # Function to generate HTML with textarea
19
+ def generate_html_with_textarea(text_to_speak):
20
+ return f'''
21
+ <!DOCTYPE html>
22
+ <html>
23
+ <head>
24
+ <title>Read It Aloud</title>
25
+ <script type="text/javascript">
26
+ function readAloud() {{
27
+ const text = document.getElementById("textArea").value;
28
+ const speech = new SpeechSynthesisUtterance(text);
29
+ window.speechSynthesis.speak(speech);
30
+ }}
31
+ </script>
32
+ </head>
33
+ <body>
34
+ <h1>๐Ÿ”Š Read It Aloud</h1>
35
+ <textarea id="textArea" rows="10" cols="80">
36
+ {text_to_speak}
37
+ </textarea>
38
+ <br>
39
+ <button onclick="readAloud()">๐Ÿ”Š Read Aloud</button>
40
+ </body>
41
+ </html>
42
+ '''
43
+
44
+ # Streamlit App ๐Ÿš€
45
+ st.title("USMLE Medical Questions Explorer with Speech Synthesis ๐ŸŽ™")
46
 
47
  # Dropdown for file selection
48
+ file_option = st.selectbox("Select file:", ["usmle_16.2MB.jsonl", "usmle_2.08MB.jsonl"])
49
  st.write(f"You selected: {file_option}")
50
 
51
+ # Load data
52
+ large_data = load_jsonl("usmle_16.2MB.jsonl")
53
+ small_data = load_jsonl("usmle_2.08MB.jsonl")
54
 
55
+ data = small_data if file_option == "usmle_16.2MB.jsonl" else small_data
 
 
 
 
56
 
57
+ # Top 20 healthcare terms for USMLE
58
+ top_20_terms = ['Heart', 'Lung', 'Pain', 'Memory', 'Kidney', 'Diabetes', 'Cancer', 'Infection', 'Virus', 'Bacteria', 'Neurology', 'Psychiatry', 'Gastrointestinal', 'Pediatrics', 'Oncology', 'Skin', 'Blood', 'Surgery', 'Epidemiology', 'Genetics']
59
 
60
+ # Create Expander and Columns UI for terms
61
+ with st.expander("Search by Common Terms ๐Ÿ“š"):
62
+ cols = st.columns(4)
63
+ for term in top_20_terms:
64
+ with cols[top_20_terms.index(term) % 4]:
65
+ if st.button(f"{term}"):
66
+ filtered_data = filter_by_keyword(data, term)
67
+ st.write(f"Filtered Dataset by '{term}' ๐Ÿ“Š")
68
+ st.dataframe(filtered_data)
69
 
70
+ # Text input for search keyword
71
+ search_keyword = st.text_input("Or, enter a keyword to filter data:")
72
+ if st.button("Search ๐Ÿ•ต๏ธโ€โ™€๏ธ"):
73
+ filtered_data = filter_by_keyword(data, search_keyword)
74
+ st.write(f"Filtered Dataset by '{search_keyword}' ๐Ÿ“Š")
75
+ st.dataframe(filtered_data)
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  # Button to read all filtered rows
78
+ if st.button("Read All Rows ๐Ÿ“–"):
79
  if not filtered_data.empty:
80
  html_blocks = []
81
  for idx, row in filtered_data.iterrows():
82
  question_text = row.get("question", "No question field")
83
+ documentHTML5 = generate_html_with_textarea(question_text)
84
  html_blocks.append(documentHTML5)
85
  all_html = ''.join(html_blocks)
86
  components.html(all_html, width=1280, height=1024)
87
  else:
88
+ st.warning("No rows to read. ๐Ÿšจ")