File size: 5,505 Bytes
ce2d794 4a66f10 ce2d794 8927802 ce2d794 8927802 ce2d794 8927802 ce2d794 8cebd63 8927802 8cebd63 8927802 0ac3298 8927802 0ac3298 ce2d794 8927802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import streamlit as st
import json
import pandas as pd
import streamlit.components.v1 as components
# Function to load JSONL file into a DataFrame
def load_jsonl(file_path):
data = []
with open(file_path, 'r') as f:
for line in f:
data.append(json.loads(line))
return pd.DataFrame(data)
# Function to filter DataFrame by keyword
def filter_by_keyword(df, keyword):
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)]
# Function to generate HTML with textarea
def generate_html_with_textarea(text_to_speak):
return f'''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>๐ Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
{text_to_speak}
</textarea>
<br>
<button onclick="readAloud()">๐ Read Aloud</button>
</body>
</html>
'''
# Streamlit App ๐
st.title("USMLE Medical Questions Explorer with Speech Synthesis ๐")
# Dropdown for file selection
file_option = st.selectbox("Select file:", ["usmle_16.2MB.jsonl", "usmle_2.08MB.jsonl"])
st.write(f"You selected: {file_option}")
# Load data
large_data = load_jsonl("usmle_16.2MB.jsonl")
small_data = load_jsonl("usmle_2.08MB.jsonl")
data = large_data if file_option == "usmle_16.2MB.jsonl" else small_data
# Top 20 healthcare terms for USMLE
top_20_terms = ['Heart', 'Lung', 'Pain', 'Memory', 'Kidney', 'Diabetes', 'Cancer', 'Infection', 'Virus', 'Bacteria', 'Neurology', 'Psychiatry', 'Gastrointestinal', 'Pediatrics', 'Oncology', 'Skin', 'Blood', 'Surgery', 'Epidemiology', 'Genetics']
# Create Expander and Columns UI for terms
with st.expander("Search by Common Terms ๐"):
cols = st.columns(4)
for term in top_20_terms:
with cols[top_20_terms.index(term) % 4]:
if st.button(f"{term}"):
filtered_data = filter_by_keyword(data, term)
st.write(f"Filtered Dataset by '{term}' ๐")
st.dataframe(filtered_data)
if not filtered_data.empty:
html_blocks = []
for idx, row in filtered_data.iterrows():
question_text = row.get("question", "No question field")
documentHTML5 = generate_html_with_textarea(question_text)
html_blocks.append(documentHTML5)
all_html = ''.join(html_blocks)
components.html(all_html, width=1280, height=1024)
# Text input for search keyword
search_keyword = st.text_input("Or, enter a keyword to filter data:")
if st.button("Search ๐ต๏ธโโ๏ธ"):
filtered_data = filter_by_keyword(data, search_keyword)
st.write(f"Filtered Dataset by '{search_keyword}' ๐")
st.dataframe(filtered_data)
if not filtered_data.empty:
html_blocks = []
for idx, row in filtered_data.iterrows():
question_text = row.get("question", "No question field")
documentHTML5 = generate_html_with_textarea(question_text)
html_blocks.append(documentHTML5)
all_html = ''.join(html_blocks)
components.html(all_html, width=1280, height=1024)
# Inject HTML5 and JavaScript for styling
st.markdown("""
<style>
.big-font {
font-size:24px !important;
}
</style>
""", unsafe_allow_html=True)
# Markdown and emojis for the case presentation
st.markdown("# ๐ฅ Case Study: 32-year-old Woman's Wellness Check")
st.markdown("## ๐ Patient Information")
st.markdown("""
- **Age**: 32
- **Gender**: Female
- **Past Medical History**: Asthma, Hypertension, Anxiety
- **Current Medications**: Albuterol, Fluticasone, Hydrochlorothiazide, Lisinopril, Fexofenadine
- **Vitals**
- **Temperature**: 99.5ยฐF (37.5ยฐC)
- **Blood Pressure**: 165/95 mmHg
- **Pulse**: 70/min
- **Respirations**: 15/min
- **Oxygen Saturation**: 98% on room air
""")
# Clinical Findings
st.markdown("## ๐ Clinical Findings")
st.markdown("""
- Cardiac exam reveals a S1 and S2 heart sound with a normal rate.
- Pulmonary exam is clear to auscultation bilaterally with good air movement.
- Abdominal exam reveals a bruit, normoactive bowel sounds, and an audible borborygmus.
- Neurological exam reveals cranial nerves II-XII as grossly intact with normal strength and reflexes in the upper and lower extremities.
""")
# Next Step Options
st.markdown("## ๐ค What is the best next step in management?")
# Multiple Choice
options = ["Blood Test", "MRI Scan", "Ultrasound with Doppler", "Immediate Surgery"]
choice = st.selectbox("", options)
# Explanation
if st.button("Submit"):
if choice == "Ultrasound with Doppler":
st.success("Correct! ๐")
st.markdown("""
### Explanation
The patient's high blood pressure coupled with an abdominal bruit suggests the possibility of renal artery stenosis.
An **Ultrasound with Doppler** is the best next step for assessing blood flow and evaluating for renal artery stenosis.
""")
else:
st.error("Incorrect. ๐")
st.markdown("""
The best next step is **Ultrasound with Doppler**.
""")
|