Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,10 @@ from huggingface_hub import hf_hub_download
|
|
10 |
from safetensors.torch import load_file
|
11 |
from PIL import Image
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# Constants
|
14 |
bases = {
|
15 |
"Cartoon": "frankjoshua/toonyou_beta6",
|
@@ -17,29 +21,41 @@ bases = {
|
|
17 |
"3d": "Lykon/DreamShaper",
|
18 |
"Anime": "Yntec/mistoonAnime2"
|
19 |
}
|
|
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
if not torch.cuda.is_available():
|
23 |
raise NotImplementedError("No GPU detected!")
|
24 |
|
25 |
device = "cuda"
|
26 |
dtype = torch.float16
|
|
|
|
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
for base_name, base_path in bases.items():
|
32 |
-
pipe = AnimateDiffPipeline.from_pretrained(base_path, torch_dtype=dtype).to(device)
|
33 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
34 |
-
pipes[base_name] = pipe
|
35 |
|
36 |
# Function
|
37 |
@spaces.GPU(duration=60,queue=False)
|
38 |
-
def generate_image(prompt, base="Realistic", motion="
|
39 |
-
global
|
|
|
40 |
global motion_loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
if motion_loaded != motion:
|
45 |
pipe.unload_lora_weights()
|
@@ -48,16 +64,6 @@ def generate_image(prompt, base="Realistic", motion="Default", step=8, progress=
|
|
48 |
pipe.set_adapters(["motion"], [0.7])
|
49 |
motion_loaded = motion
|
50 |
|
51 |
-
|
52 |
-
# Load step model if not already loaded
|
53 |
-
repo = "ByteDance/AnimateDiff-Lightning"
|
54 |
-
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
55 |
-
try:
|
56 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt, local_files_only=True), device=device), strict=False)
|
57 |
-
except:
|
58 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
59 |
-
|
60 |
-
# Generate image
|
61 |
output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step)
|
62 |
|
63 |
name = str(uuid.uuid4()).replace("-", "")
|
@@ -66,7 +72,6 @@ def generate_image(prompt, base="Realistic", motion="Default", step=8, progress=
|
|
66 |
return path
|
67 |
|
68 |
|
69 |
-
|
70 |
# Gradio Interface
|
71 |
with gr.Blocks(css="style.css") as demo:
|
72 |
gr.HTML(
|
@@ -90,7 +95,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
90 |
"3d",
|
91 |
"Anime",
|
92 |
],
|
93 |
-
value=
|
94 |
interactive=True
|
95 |
)
|
96 |
select_motion = gr.Dropdown(
|
@@ -157,7 +162,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
157 |
fn=generate_image,
|
158 |
inputs=[prompt],
|
159 |
outputs=[video],
|
160 |
-
cache_examples=
|
161 |
)
|
162 |
|
163 |
-
demo.queue().launch()
|
|
|
|
|
|
10 |
from safetensors.torch import load_file
|
11 |
from PIL import Image
|
12 |
|
13 |
+
MORE = """ ## TRY Other Demos
|
14 |
+
### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
|
15 |
+
"""
|
16 |
+
|
17 |
# Constants
|
18 |
bases = {
|
19 |
"Cartoon": "frankjoshua/toonyou_beta6",
|
|
|
21 |
"3d": "Lykon/DreamShaper",
|
22 |
"Anime": "Yntec/mistoonAnime2"
|
23 |
}
|
24 |
+
step_loaded = None
|
25 |
+
base_loaded = "Realistic"
|
26 |
+
motion_loaded = None
|
27 |
|
28 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
29 |
if not torch.cuda.is_available():
|
30 |
raise NotImplementedError("No GPU detected!")
|
31 |
|
32 |
device = "cuda"
|
33 |
dtype = torch.float16
|
34 |
+
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
35 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
36 |
|
37 |
+
# Safety checkers
|
38 |
+
from transformers import CLIPFeatureExtractor
|
39 |
|
40 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Function
|
43 |
@spaces.GPU(duration=60,queue=False)
|
44 |
+
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
|
45 |
+
global step_loaded
|
46 |
+
global base_loaded
|
47 |
global motion_loaded
|
48 |
+
print(prompt, base, step)
|
49 |
+
|
50 |
+
if step_loaded != step:
|
51 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
52 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
53 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
54 |
+
step_loaded = step
|
55 |
|
56 |
+
if base_loaded != base:
|
57 |
+
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
|
58 |
+
base_loaded = base
|
59 |
|
60 |
if motion_loaded != motion:
|
61 |
pipe.unload_lora_weights()
|
|
|
64 |
pipe.set_adapters(["motion"], [0.7])
|
65 |
motion_loaded = motion
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step)
|
68 |
|
69 |
name = str(uuid.uuid4()).replace("-", "")
|
|
|
72 |
return path
|
73 |
|
74 |
|
|
|
75 |
# Gradio Interface
|
76 |
with gr.Blocks(css="style.css") as demo:
|
77 |
gr.HTML(
|
|
|
95 |
"3d",
|
96 |
"Anime",
|
97 |
],
|
98 |
+
value=base_loaded,
|
99 |
interactive=True
|
100 |
)
|
101 |
select_motion = gr.Dropdown(
|
|
|
162 |
fn=generate_image,
|
163 |
inputs=[prompt],
|
164 |
outputs=[video],
|
165 |
+
cache_examples=True,
|
166 |
)
|
167 |
|
168 |
+
demo.queue().launch()
|
169 |
+
|
170 |
+
Translate
|