Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
import torch | |
import numpy as np | |
from ultralytics import YOLO | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x', pretrained=True) | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['TresPass_Detection_1.mp4']] | |
# area = [(215, 180), (120, 75), (370, 55), (520, 140), (215, 180) ] | |
area = [(215, 180), (110, 75), (370, 55), (520, 140), (215, 180) ] | |
# def show_preds_video(video_path): | |
def show_preds_video(): | |
cap = cv2.VideoCapture('TresPass_Detection_1.mp4') | |
count=0 | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
count += 1 | |
if count % 10 != 0: | |
continue | |
# frame = cv2.imread(video_path) | |
frame=cv2.resize(frame,(1020,600)) | |
frame_copy = frame.copy() | |
frame=cv2.resize(frame,(1020,600)) | |
results=model(frame) | |
for index, row in results.pandas().xyxy[0].iterrows(): | |
x1 = int(row['xmin']) | |
y1 = int(row['ymin']) | |
x2 = int(row['xmax']) | |
y2 = int(row['ymax']) | |
d=(row['name']) | |
cx=int(x1+x2)//2 | |
cy=int(y1+y2)//2 | |
if ('person') in d: | |
results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False) | |
if results >0: | |
cv2.rectangle(frame_copy,(x1,y1),(x2,y2),(0,0,255),2) | |
cv2.putText(frame_copy,str(d),(x1,y1),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255),1) | |
cv2.putText(frame_copy,str("Alert !!! Trespasser detected !!!"),(50,400),cv2.FONT_HERSHEY_PLAIN,2,(0,0,255),3) | |
cv2.polylines(frame_copy, [np.array(area, np.int32)], True, (0,255,0), 2) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
inputs_video = [ #gr.components.Video(type="filepath", label="Input Video", visible =False), | |
] | |
outputs_video = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Intrusion Detection", | |
examples=video_path, | |
cache_examples=False, | |
) | |
gr.TabbedInterface( | |
[interface_video], | |
# [interface_image, interface_video], | |
tab_names=['Video inference'] | |
).queue().launch(width=200, height = 200) | |
# def show_preds_image(image_path): | |
# frame = cv2.imread(image_path) | |
# frame=cv2.resize(frame,(1020,600)) | |
# results=model(frame) | |
# for index, row in results.pandas().xyxy[0].iterrows(): | |
# x1 = int(row['xmin']) | |
# y1 = int(row['ymin']) | |
# x2 = int(row['xmax']) | |
# y2 = int(row['ymax']) | |
# d=(row['name']) | |
# cx=int(x1+x2)//2 | |
# cy=int(y1+y2)//2 | |
# if ('person') in d: | |
# results = cv2.pointPolygonTest(np.array(area, np.int32), ((cx,cy)), False) | |
# if results >0: | |
# cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2) | |
# cv2.putText(frame,str(d),(x1,y1),cv2.FONT_HERSHEY_PLAIN,1,(255,0,0),2) | |
# cv2.polylines(frame, [np.array(area, np.int32)], True, (0,255,0), 2) | |
# return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# inputs_image = [ | |
# gr.components.Image(type="filepath", label="Input Image"), | |
# ] | |
# outputs_image = [ | |
# gr.components.Image(type="numpy", label="Output Image"), | |
# ] | |
# interface_image = gr.Interface( | |
# fn=show_preds_image, | |
# inputs=inputs_image, | |
# outputs=outputs_image, | |
# title="Parking space counter", | |
# examples=path, | |
# cache_examples=False, | |
# ) | |