Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
8 |
from sklearn.neighbors import NearestNeighbors
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
|
|
|
|
11 |
|
12 |
# Set page configuration
|
13 |
st.set_page_config(
|
@@ -21,33 +23,73 @@ GITHUB_CSV_URL = "https://media.githubusercontent.com/media/Manithj/bookRecEngin
|
|
21 |
GITHUB_KNN_URL = "https://media.githubusercontent.com/media/Manithj/bookRecEngine/refs/heads/main/knn_model.pkl"
|
22 |
GITHUB_TFIDF_URL = "https://raw.githubusercontent.com/Manithj/bookRecEngine/main/tfidf_vectorizer.pkl"
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Define the preprocessing function
|
25 |
def preprocess_text(text):
|
26 |
return re.sub(r'[^a-zA-Z0-9\s]', '', text.lower())
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@st.cache_resource
|
30 |
-
def
|
31 |
try:
|
32 |
-
#
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
-
# Load
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
return tfidf, knn_model
|
41 |
except Exception as e:
|
42 |
st.error(f"Error loading models: {e}")
|
43 |
return None, None
|
44 |
|
45 |
-
# Load the dataset from
|
46 |
@st.cache_data
|
47 |
-
def
|
48 |
try:
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Clean and prepare the data
|
53 |
df_cleaned = df_cleaned.drop_nulls(subset=['name', 'summary', 'genres'])
|
@@ -69,8 +111,8 @@ def load_data_from_github():
|
|
69 |
|
70 |
# Load models and data at startup - this happens only once due to caching
|
71 |
with st.spinner("Loading models and data (this will only happen once)..."):
|
72 |
-
tfidf, knn_model =
|
73 |
-
df_cleaned =
|
74 |
|
75 |
if tfidf is not None and knn_model is not None and df_cleaned is not None:
|
76 |
models_loaded = True
|
@@ -82,7 +124,7 @@ st.title("📚 Book Recommendation System")
|
|
82 |
st.markdown("Enter a book summary and genres to get personalized book recommendations!")
|
83 |
|
84 |
if not models_loaded:
|
85 |
-
st.error("Failed to load models or data. Please check the
|
86 |
else:
|
87 |
st.success("Models and data loaded successfully!")
|
88 |
|
@@ -184,7 +226,7 @@ st.sidebar.info(
|
|
184 |
The recommendations are based on textual similarity between your input and
|
185 |
our database of books from Goodreads.
|
186 |
|
187 |
-
Models and data are
|
188 |
"""
|
189 |
)
|
190 |
|
|
|
8 |
from sklearn.neighbors import NearestNeighbors
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
11 |
+
import os
|
12 |
+
import time
|
13 |
|
14 |
# Set page configuration
|
15 |
st.set_page_config(
|
|
|
23 |
GITHUB_KNN_URL = "https://media.githubusercontent.com/media/Manithj/bookRecEngine/refs/heads/main/knn_model.pkl"
|
24 |
GITHUB_TFIDF_URL = "https://raw.githubusercontent.com/Manithj/bookRecEngine/main/tfidf_vectorizer.pkl"
|
25 |
|
26 |
+
# Local file paths for saved models and dataset
|
27 |
+
MODEL_DIR = "models"
|
28 |
+
DATA_DIR = "data"
|
29 |
+
KNN_PATH = os.path.join(MODEL_DIR, "knn_model.pkl")
|
30 |
+
TFIDF_PATH = os.path.join(MODEL_DIR, "tfidf_vectorizer.pkl")
|
31 |
+
CSV_PATH = os.path.join(DATA_DIR, "goodreadsV2.csv")
|
32 |
+
|
33 |
+
# Create directories if they don't exist
|
34 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
35 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
36 |
+
|
37 |
# Define the preprocessing function
|
38 |
def preprocess_text(text):
|
39 |
return re.sub(r'[^a-zA-Z0-9\s]', '', text.lower())
|
40 |
|
41 |
+
# Download and save files if they don't exist locally
|
42 |
+
def download_and_save_file(url, save_path, is_binary=True):
|
43 |
+
if not os.path.exists(save_path):
|
44 |
+
with st.spinner(f"Downloading {os.path.basename(save_path)}..."):
|
45 |
+
response = requests.get(url)
|
46 |
+
if response.status_code == 200:
|
47 |
+
mode = "wb" if is_binary else "w"
|
48 |
+
with open(save_path, mode) as f:
|
49 |
+
f.write(response.content)
|
50 |
+
st.success(f"Downloaded {os.path.basename(save_path)}")
|
51 |
+
# Add a small delay to ensure file is completely written
|
52 |
+
time.sleep(1)
|
53 |
+
else:
|
54 |
+
st.error(f"Failed to download from {url}, status code: {response.status_code}")
|
55 |
+
return False
|
56 |
+
return True
|
57 |
+
|
58 |
+
# Load models from local storage or download if needed
|
59 |
@st.cache_resource
|
60 |
+
def load_models():
|
61 |
try:
|
62 |
+
# Download models if they don't exist locally
|
63 |
+
tfidf_downloaded = download_and_save_file(GITHUB_TFIDF_URL, TFIDF_PATH)
|
64 |
+
knn_downloaded = download_and_save_file(GITHUB_KNN_URL, KNN_PATH)
|
65 |
+
|
66 |
+
if not (tfidf_downloaded and knn_downloaded):
|
67 |
+
return None, None
|
68 |
|
69 |
+
# Load models from local storage
|
70 |
+
with open(TFIDF_PATH, 'rb') as f:
|
71 |
+
tfidf = pickle.load(f)
|
72 |
+
|
73 |
+
with open(KNN_PATH, 'rb') as f:
|
74 |
+
knn_model = pickle.load(f)
|
75 |
|
76 |
return tfidf, knn_model
|
77 |
except Exception as e:
|
78 |
st.error(f"Error loading models: {e}")
|
79 |
return None, None
|
80 |
|
81 |
+
# Load the dataset from local storage or download if needed
|
82 |
@st.cache_data
|
83 |
+
def load_data():
|
84 |
try:
|
85 |
+
# Download dataset if it doesn't exist locally
|
86 |
+
csv_downloaded = download_and_save_file(GITHUB_CSV_URL, CSV_PATH, is_binary=True)
|
87 |
+
|
88 |
+
if not csv_downloaded:
|
89 |
+
return None
|
90 |
+
|
91 |
+
# Load CSV from local storage
|
92 |
+
df_cleaned = pl.read_csv(CSV_PATH)
|
93 |
|
94 |
# Clean and prepare the data
|
95 |
df_cleaned = df_cleaned.drop_nulls(subset=['name', 'summary', 'genres'])
|
|
|
111 |
|
112 |
# Load models and data at startup - this happens only once due to caching
|
113 |
with st.spinner("Loading models and data (this will only happen once)..."):
|
114 |
+
tfidf, knn_model = load_models()
|
115 |
+
df_cleaned = load_data()
|
116 |
|
117 |
if tfidf is not None and knn_model is not None and df_cleaned is not None:
|
118 |
models_loaded = True
|
|
|
124 |
st.markdown("Enter a book summary and genres to get personalized book recommendations!")
|
125 |
|
126 |
if not models_loaded:
|
127 |
+
st.error("Failed to load models or data. Please check the file paths and URLs.")
|
128 |
else:
|
129 |
st.success("Models and data loaded successfully!")
|
130 |
|
|
|
226 |
The recommendations are based on textual similarity between your input and
|
227 |
our database of books from Goodreads.
|
228 |
|
229 |
+
Models and data are stored locally on the server after initial download.
|
230 |
"""
|
231 |
)
|
232 |
|