awacke1's picture
Update app.py
1190eb6
raw
history blame
4.5 kB
import streamlit as st
import spacy
import numpy as np
from gensim import corpora, models
from itertools import chain
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.metrics.pairwise import cosine_similarity
from itertools import islice
from scipy.signal import argrelmax
nlp = spacy.load('en_core_web_sm')
def window(seq, n=3):
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
def get_depths(scores):
def climb(seq, i, mode='left'):
if mode == 'left':
while True:
curr = seq[i]
if i == 0:
return curr
i = i-1
if not seq[i] > curr:
return curr
if mode == 'right':
while True:
curr = seq[i]
if i == (len(seq)-1):
return curr
i = i+1
if not seq[i] > curr:
return curr
depths = []
for i in range(len(scores)):
score = scores[i]
l_peak = climb(scores, i, mode='left')
r_peak = climb(scores, i, mode='right')
depth = 0.5 * (l_peak + r_peak - (2*score))
depths.append(depth)
return np.array(depths)
def get_local_maxima(depth_scores, order=1):
maxima_ids = argrelmax(depth_scores, order=order)[0]
filtered_scores = np.zeros(len(depth_scores))
filtered_scores[maxima_ids] = depth_scores[maxima_ids]
return filtered_scores
def compute_threshold(scores):
s = scores[np.nonzero(scores)]
threshold = np.mean(s) - (np.std(s) / 2)
return threshold
def get_threshold_segments(scores, threshold=0.1):
segment_ids = np.where(scores >= threshold)[0]
return segment_ids
def print_list(lst):
for e in lst:
st.markdown("- " + e)
st.subheader("Topic Modeling with Segmentation")
uploaded_file = st.file_uploader("choose a text file", type=["txt"])
if uploaded_file is not None:
st.session_state["text"] = uploaded_file.getvalue().decode('utf-8')
st.write("OR")
input_text = st.text_area(
label="Enter text separated by newlines",
value="",
key="text",
height=150
)
button=st.button('Get Segments')
if (button==True) and input_text != "":
texts = input_text.split('\n')
sents = []
for text in texts:
doc = nlp(text)
for sent in doc.sents:
sents.append(sent)
MIN_LENGTH = 3
tokenized_sents = [[token.lemma_.lower() for token in sent if
not token.is_stop and not token.is_punct and token.text.strip() and len(token) >= MIN_LENGTH]
for sent in sents]
st.write("Modeling topics:")
np.random.seed(123)
N_TOPICS = 5
N_PASSES = 5
dictionary = corpora.Dictionary(tokenized_sents)
bow = [dictionary.doc2bow(sent) for sent in tokenized_sents]
topic_model = models.LdaModel(corpus=bow, id2word=dictionary, num_topics=N_TOPICS, passes=N_PASSES)
st.write("inferring topics ...")
THRESHOLD = 0.05
doc_topics = list(topic_model.get_document_topics(bow, minimum_probability=THRESHOLD))
k = 3
top_k_topics = [[t[0] for t in sorted(sent_topics, key=lambda x: x[1], reverse=True)][:k]
for sent_topics in doc_topics]
WINDOW_SIZE = 3
window_topics = window(top_k_topics, n=WINDOW_SIZE)
window_topics = [list(set(chain.from_iterable(window))) for window in window_topics]
binarizer = MultiLabelBinarizer(classes=range(N_TOPICS))
encoded_topic = binarizer.fit_transform(window_topics)
st.write("generating segments ...")
sims_topic = [cosine_similarity([pair[0]], [pair[1]])[0][0] for pair in zip(encoded_topic, encoded_topic[1:])]
depths_topic = get_depths(sims_topic)
filtered_topic = get_local_maxima(depths_topic, order=1)
threshold_topic = compute_threshold(filtered_topic)
threshold_segments_topic = get_threshold_segments(filtered_topic, threshold_topic)
segment_ids = threshold_segments_topic + WINDOW_SIZE
segment_ids = [0] + segment_ids.tolist() + [len(sents)]
slices = list(zip(segment_ids[:-1], segment_ids[1:]))
segmented = [sents[s[0]: s[1]] for s in slices]
for segment in segmented[:-1]:
print_list([s.text for s in segment])
st.markdown("""---""")
print_list([s.text for s in segmented[-1]])