Spaces:
Sleeping
Sleeping
AFischer1985
commited on
Commit
•
43fdc5b
1
Parent(s):
7151b09
Update run.py
Browse files
run.py
CHANGED
@@ -38,23 +38,47 @@ print(client.list_collections())
|
|
38 |
jina_ef=JinaEmbeddingFunction()
|
39 |
embeddingModel=jina_ef
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
import json
|
45 |
-
inferenceClient = InferenceClient(
|
46 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1"
|
47 |
-
#"mistralai/Mistral-7B-Instruct-v0.1"
|
48 |
-
)
|
49 |
-
def format_prompt(message, history):
|
50 |
prompt = "<s>"
|
51 |
#for user_prompt, bot_response in history:
|
52 |
# prompt += f"[INST] {user_prompt} [/INST]"
|
53 |
-
# prompt += f" {bot_response}</s> "
|
54 |
prompt += f"[INST] {message} [/INST]"
|
55 |
return prompt
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
from pypdf import PdfReader
|
60 |
import ocrmypdf
|
@@ -159,14 +183,20 @@ def add_doc(path, session):
|
|
159 |
print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
|
160 |
return(collection)
|
161 |
|
|
|
162 |
#split_with_overlap("test me if you can",2,1)
|
163 |
from datetime import date
|
164 |
databases=[(date.today(),"0")] # list of all databases
|
165 |
|
|
|
166 |
import gradio as gr
|
167 |
import re
|
168 |
-
def multimodalResponse(message,history,dropdown, request: gr.Request):
|
169 |
print("def multimodal response!")
|
|
|
|
|
|
|
|
|
170 |
global databases
|
171 |
if request:
|
172 |
session=request.session_hash
|
@@ -186,10 +216,7 @@ def multimodalResponse(message,history,dropdown, request: gr.Request):
|
|
186 |
print(str(client.list_collections()))
|
187 |
x=collection.get(include=[])["ids"]
|
188 |
context=collection.query(query_texts=[query], n_results=1)
|
189 |
-
|
190 |
-
#context=["<context "+str(i+1)+">\n"+c+"\n</context "+str(i+1)+">" for i, c in enumerate(retrievedTexts)]
|
191 |
-
#context="\n\n".join(context)
|
192 |
-
#return context
|
193 |
generate_kwargs = dict(
|
194 |
temperature=float(0.9),
|
195 |
max_new_tokens=5000,
|
@@ -206,13 +233,15 @@ def multimodalResponse(message,history,dropdown, request: gr.Request):
|
|
206 |
#"Return only your response to the question given the above information "+\
|
207 |
#"following the users instructions as needed.\n\nContext:"+\
|
208 |
print(system)
|
209 |
-
formatted_prompt =
|
|
|
|
|
210 |
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
211 |
output = ""
|
212 |
for response in stream:
|
213 |
output += response.token.text
|
214 |
yield output
|
215 |
-
#output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br
|
216 |
yield output
|
217 |
|
218 |
i=gr.ChatInterface(multimodalResponse,
|
@@ -223,8 +252,10 @@ i=gr.ChatInterface(multimodalResponse,
|
|
223 |
info="select retrieval version",
|
224 |
choices=["1","2","3"],
|
225 |
value=["1"],
|
226 |
-
label="Retrieval Version")
|
|
|
|
|
|
|
|
|
227 |
i.launch() #allowed_paths=["."])
|
228 |
|
229 |
-
|
230 |
-
|
|
|
38 |
jina_ef=JinaEmbeddingFunction()
|
39 |
embeddingModel=jina_ef
|
40 |
|
41 |
+
#mod="mistralai/Mixtral-8x7b-instruct-v0.1"
|
42 |
+
#tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
|
43 |
+
#cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
|
44 |
+
cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
|
45 |
+
#res=tok.apply_chat_template(cha)
|
46 |
+
#print(tok.decode(res))
|
47 |
|
48 |
+
|
49 |
+
def format_prompt0(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
prompt = "<s>"
|
51 |
#for user_prompt, bot_response in history:
|
52 |
# prompt += f"[INST] {user_prompt} [/INST]"
|
53 |
+
# prompt += f" {bot_response}</s> "
|
54 |
prompt += f"[INST] {message} [/INST]"
|
55 |
return prompt
|
56 |
|
57 |
|
58 |
+
def format_prompt(message, history, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False):
|
59 |
+
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
|
60 |
+
startOfString="<s>" #<s> [INST] U1 [/INST] A1</s> [INST] U2 [/INST] A2</s>
|
61 |
+
template0=" [INST]{system}\n[/INST]</s>"
|
62 |
+
template1=" [INST] {message} [/INST]"
|
63 |
+
template2=" {response}</s>"
|
64 |
+
prompt = ""
|
65 |
+
if RAGAddon is not None:
|
66 |
+
system += RAGAddon
|
67 |
+
if system is not None:
|
68 |
+
prompt += template0.format(system=system) #"<s>"
|
69 |
+
if history is not None:
|
70 |
+
for user_message, bot_response in history[-historylimit:]:
|
71 |
+
if user_message is None: user_message = ""
|
72 |
+
if bot_response is None: bot_response = ""
|
73 |
+
#bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
|
74 |
+
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
|
75 |
+
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
|
76 |
+
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
|
77 |
+
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
|
78 |
+
if system2 is not None:
|
79 |
+
prompt += system2
|
80 |
+
return startOfString+prompt
|
81 |
+
|
82 |
|
83 |
from pypdf import PdfReader
|
84 |
import ocrmypdf
|
|
|
183 |
print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
|
184 |
return(collection)
|
185 |
|
186 |
+
|
187 |
#split_with_overlap("test me if you can",2,1)
|
188 |
from datetime import date
|
189 |
databases=[(date.today(),"0")] # list of all databases
|
190 |
|
191 |
+
from huggingface_hub import InferenceClient
|
192 |
import gradio as gr
|
193 |
import re
|
194 |
+
def multimodalResponse(message, history, dropdown, hfToken, request: gr.Request):
|
195 |
print("def multimodal response!")
|
196 |
+
if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided
|
197 |
+
inferenceClient = InferenceClient(model=myModel, token=hfToken)
|
198 |
+
else:
|
199 |
+
inferenceClient = InferenceClient(myModel)
|
200 |
global databases
|
201 |
if request:
|
202 |
session=request.session_hash
|
|
|
216 |
print(str(client.list_collections()))
|
217 |
x=collection.get(include=[])["ids"]
|
218 |
context=collection.query(query_texts=[query], n_results=1)
|
219 |
+
gr.Info("Kontext:\n"+str(context))
|
|
|
|
|
|
|
220 |
generate_kwargs = dict(
|
221 |
temperature=float(0.9),
|
222 |
max_new_tokens=5000,
|
|
|
233 |
#"Return only your response to the question given the above information "+\
|
234 |
#"following the users instructions as needed.\n\nContext:"+\
|
235 |
print(system)
|
236 |
+
#formatted_prompt = format_prompt0(system+"\n"+query, history)
|
237 |
+
formatted_prompt = format_prompt(query, history,system=system)
|
238 |
+
print(formated_prompt)
|
239 |
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
240 |
output = ""
|
241 |
for response in stream:
|
242 |
output += response.token.text
|
243 |
yield output
|
244 |
+
#output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br>"+str(context)+"</details>"
|
245 |
yield output
|
246 |
|
247 |
i=gr.ChatInterface(multimodalResponse,
|
|
|
252 |
info="select retrieval version",
|
253 |
choices=["1","2","3"],
|
254 |
value=["1"],
|
255 |
+
label="Retrieval Version"),
|
256 |
+
gr.Textbox(
|
257 |
+
value="",
|
258 |
+
label="HF_token"),
|
259 |
+
])
|
260 |
i.launch() #allowed_paths=["."])
|
261 |
|
|
|
|