AFischer1985 commited on
Commit
7357b62
1 Parent(s): f7d0635

Update run.py

Browse files
Files changed (1) hide show
  1. run.py +11 -10
run.py CHANGED
@@ -5,18 +5,25 @@
5
  # Last update: October 15th, 2024
6
  #############################################################################
7
 
 
 
 
 
 
 
 
 
 
 
8
  dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db"
9
  if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
10
 
11
  print(dbPath)
12
 
 
13
  # Chroma-DB
14
  #-----------
15
 
16
- import chromadb
17
- from chromadb import Documents, EmbeddingFunction, Embeddings
18
- import torch # chromaDB
19
- from transformers import AutoTokenizer, AutoModel # chromaDB
20
  jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
21
  #jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
22
  device='cuda:0' if torch.cuda.is_available() else 'cpu'
@@ -33,14 +40,12 @@ client = chromadb.PersistentClient(path=path)
33
  print(client.heartbeat())
34
  print(client.get_version())
35
  print(client.list_collections())
36
- from chromadb.utils import embedding_functions
37
  #default_ef = embedding_functions.DefaultEmbeddingFunction()
38
  #sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
39
  #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
40
  jina_ef=JinaEmbeddingFunction()
41
  embeddingFunction=jina_ef
42
  print(str(client.list_collections()))
43
-
44
 
45
  global collection
46
  if("name=BerufenetDB1" in str(client.list_collections())):
@@ -54,10 +59,6 @@ print(collection.count())
54
  # Gradio-GUI
55
  #------------
56
 
57
- from huggingface_hub import InferenceClient
58
- import gradio as gr
59
- import json
60
-
61
  myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
62
 
63
  def format_prompt(message, history):
 
5
  # Last update: October 15th, 2024
6
  #############################################################################
7
 
8
+ import os
9
+ import chromadb
10
+ from chromadb import Documents, EmbeddingFunction, Embeddings
11
+ from chromadb.utils import embedding_functions
12
+ import torch # chromaDB
13
+ from transformers import AutoTokenizer, AutoModel # chromaDB
14
+ from huggingface_hub import InferenceClient # Gradio-Interface
15
+ import gradio as gr # Gradio-Interface
16
+ import json # Gradio-Interface
17
+
18
  dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db"
19
  if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
20
 
21
  print(dbPath)
22
 
23
+
24
  # Chroma-DB
25
  #-----------
26
 
 
 
 
 
27
  jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
28
  #jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
29
  device='cuda:0' if torch.cuda.is_available() else 'cpu'
 
40
  print(client.heartbeat())
41
  print(client.get_version())
42
  print(client.list_collections())
 
43
  #default_ef = embedding_functions.DefaultEmbeddingFunction()
44
  #sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
45
  #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
46
  jina_ef=JinaEmbeddingFunction()
47
  embeddingFunction=jina_ef
48
  print(str(client.list_collections()))
 
49
 
50
  global collection
51
  if("name=BerufenetDB1" in str(client.list_collections())):
 
59
  # Gradio-GUI
60
  #------------
61
 
 
 
 
 
62
  myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
63
 
64
  def format_prompt(message, history):