Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,111 +6,155 @@ import torch
|
|
6 |
import pandas as pd
|
7 |
import gradio as gr
|
8 |
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Set cache directory for Hugging Face models
|
11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
12 |
|
13 |
-
# Load dataset
|
14 |
DATASET_PATH = os.path.join(os.getcwd(), "springer_papers_DL.json")
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Clean text
|
20 |
def clean_text(text):
|
21 |
-
return text.strip().lower()
|
22 |
|
23 |
df["cleaned_abstract"] = df["abstract"].apply(clean_text)
|
24 |
|
25 |
# Precompute BM25 Index
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
# Load
|
30 |
-
sci_bert_tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
|
31 |
-
sci_bert_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
-
|
34 |
-
sci_bert_model.eval()
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Generate SciBERT embeddings
|
43 |
def generate_embeddings_sci_bert(texts, batch_size=32):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Precompute embeddings and FAISS index
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
faiss_index.
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Hybrid search function
|
64 |
def get_relevant_papers(query, top_k=5):
|
65 |
if not query.strip():
|
66 |
return []
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# GPT-2 QA function
|
81 |
def answer_question(paper, question, history):
|
|
|
|
|
82 |
if not question.strip():
|
83 |
-
return "Please ask a question!", history
|
84 |
if question.lower() in ["exit", "done"]:
|
85 |
-
return "Conversation ended. Select a new paper or search again!", []
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Gradio UI
|
116 |
with gr.Blocks(
|
@@ -148,18 +192,21 @@ with gr.Blocks(
|
|
148 |
|
149 |
# Update selected paper
|
150 |
paper_dropdown.change(
|
151 |
-
fn=lambda x: x,
|
152 |
inputs=paper_dropdown,
|
153 |
-
outputs=selected_paper
|
154 |
)
|
155 |
|
156 |
# Handle chat
|
157 |
chat_btn.click(
|
158 |
fn=answer_question,
|
159 |
inputs=[selected_paper, question_input, history_state],
|
160 |
-
outputs=[chatbot, history_state]
|
161 |
-
|
|
|
|
|
|
|
162 |
)
|
163 |
|
164 |
# Launch the app
|
165 |
-
demo.launch()
|
|
|
6 |
import pandas as pd
|
7 |
import gradio as gr
|
8 |
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
|
9 |
+
import logging
|
10 |
+
|
11 |
+
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
|
15 |
# Set cache directory for Hugging Face models
|
16 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
17 |
|
18 |
+
# Load dataset with error handling
|
19 |
DATASET_PATH = os.path.join(os.getcwd(), "springer_papers_DL.json")
|
20 |
+
try:
|
21 |
+
if not os.path.exists(DATASET_PATH):
|
22 |
+
raise FileNotFoundError(f"Dataset file not found at {DATASET_PATH}")
|
23 |
+
df = pd.read_json(DATASET_PATH)
|
24 |
+
logger.info("Dataset loaded successfully")
|
25 |
+
except Exception as e:
|
26 |
+
logger.error(f"Failed to load dataset: {e}")
|
27 |
+
raise
|
28 |
|
29 |
# Clean text
|
30 |
def clean_text(text):
|
31 |
+
return text.strip().lower() if isinstance(text, str) else ""
|
32 |
|
33 |
df["cleaned_abstract"] = df["abstract"].apply(clean_text)
|
34 |
|
35 |
# Precompute BM25 Index
|
36 |
+
try:
|
37 |
+
tokenized_corpus = [paper.split() for paper in df["cleaned_abstract"]]
|
38 |
+
bm25 = BM25Okapi(tokenized_corpus)
|
39 |
+
logger.info("BM25 index created")
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"BM25 index creation failed: {e}")
|
42 |
+
raise
|
43 |
|
44 |
+
# Load models with error handling
|
|
|
|
|
45 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
+
logger.info(f"Using device: {device}")
|
|
|
47 |
|
48 |
+
try:
|
49 |
+
# SciBERT for embeddings
|
50 |
+
sci_bert_tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
|
51 |
+
sci_bert_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
|
52 |
+
sci_bert_model.to(device)
|
53 |
+
sci_bert_model.eval()
|
54 |
+
logger.info("SciBERT loaded")
|
55 |
+
|
56 |
+
# DistilGPT-2 for QA
|
57 |
+
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2", cache_dir="/tmp/huggingface")
|
58 |
+
gpt2_model = GPT2LMHeadModel.from_pretrained("distilgpt2", cache_dir="/tmp/huggingface")
|
59 |
+
gpt2_model.to(device)
|
60 |
+
gpt2_model.eval()
|
61 |
+
logger.info("DistilGPT-2 loaded")
|
62 |
+
except Exception as e:
|
63 |
+
logger.error(f"Model loading failed: {e}")
|
64 |
+
raise
|
65 |
|
66 |
# Generate SciBERT embeddings
|
67 |
def generate_embeddings_sci_bert(texts, batch_size=32):
|
68 |
+
try:
|
69 |
+
all_embeddings = []
|
70 |
+
for i in range(0, len(texts), batch_size):
|
71 |
+
batch = texts[i:i + batch_size]
|
72 |
+
inputs = sci_bert_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
73 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
74 |
+
with torch.no_grad():
|
75 |
+
outputs = sci_bert_model(**inputs)
|
76 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
77 |
+
all_embeddings.append(embeddings.cpu().numpy())
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
return np.concatenate(all_embeddings, axis=0)
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Embedding generation failed: {e}")
|
82 |
+
return np.zeros((len(texts), 768)) # Fallback to zero embeddings
|
83 |
|
84 |
# Precompute embeddings and FAISS index
|
85 |
+
try:
|
86 |
+
abstracts = df["cleaned_abstract"].tolist()
|
87 |
+
embeddings = generate_embeddings_sci_bert(abstracts)
|
88 |
+
dimension = embeddings.shape[1]
|
89 |
+
faiss_index = faiss.IndexFlatL2(dimension)
|
90 |
+
faiss_index.add(embeddings.astype(np.float32))
|
91 |
+
logger.info("FAISS index created")
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"FAISS index creation failed: {e}")
|
94 |
+
raise
|
95 |
|
96 |
# Hybrid search function
|
97 |
def get_relevant_papers(query, top_k=5):
|
98 |
if not query.strip():
|
99 |
return []
|
100 |
+
try:
|
101 |
+
query_embedding = generate_embeddings_sci_bert([query])
|
102 |
+
distances, indices = faiss_index.search(query_embedding.astype(np.float32), top_k)
|
103 |
+
tokenized_query = query.split()
|
104 |
+
bm25_scores = bm25.get_scores(tokenized_query)
|
105 |
+
bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]
|
106 |
+
combined_indices = list(set(indices[0]) | set(bm25_top_indices))
|
107 |
+
ranked_results = sorted(combined_indices, key=lambda idx: -bm25_scores[idx])
|
108 |
+
papers = []
|
109 |
+
for i, index in enumerate(ranked_results[:top_k]):
|
110 |
+
paper = df.iloc[index]
|
111 |
+
papers.append(f"{i+1}. {paper['title']} - Abstract: {paper['cleaned_abstract'][:200]}...")
|
112 |
+
return papers
|
113 |
+
except Exception as e:
|
114 |
+
logger.error(f"Search failed: {e}")
|
115 |
+
return ["Search failed. Please try again."]
|
116 |
|
117 |
# GPT-2 QA function
|
118 |
def answer_question(paper, question, history):
|
119 |
+
if not paper:
|
120 |
+
return [("Please select a paper first!", "")], history
|
121 |
if not question.strip():
|
122 |
+
return [(question, "Please ask a question!")], history
|
123 |
if question.lower() in ["exit", "done"]:
|
124 |
+
return [("Conversation ended. Select a new paper or search again!", "")], []
|
125 |
+
|
126 |
+
try:
|
127 |
+
# Extract title and abstract
|
128 |
+
title = paper.split(" - Abstract: ")[0].split(". ", 1)[1]
|
129 |
+
abstract = paper.split(" - Abstract: ")[1].rstrip("...")
|
130 |
+
|
131 |
+
# Build context with history
|
132 |
+
context = f"Title: {title}\nAbstract: {abstract}\n\nPrevious conversation:\n"
|
133 |
+
for user_q, bot_a in history:
|
134 |
+
context += f"User: {user_q}\nAssistant: {bot_a}\n"
|
135 |
+
context += f"User: {question}\nAssistant: "
|
136 |
+
|
137 |
+
# Generate response
|
138 |
+
inputs = gpt2_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
|
139 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
140 |
+
with torch.no_grad():
|
141 |
+
outputs = gpt2_model.generate(
|
142 |
+
inputs["input_ids"],
|
143 |
+
max_new_tokens=100,
|
144 |
+
do_sample=True,
|
145 |
+
temperature=0.7,
|
146 |
+
top_k=50,
|
147 |
+
pad_token_id=gpt2_tokenizer.eos_token_id
|
148 |
+
)
|
149 |
+
response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
150 |
+
response = response[len(context):].strip()
|
151 |
+
|
152 |
+
history.append((question, response))
|
153 |
+
return history, history # Return updated history for Chatbot
|
154 |
+
except Exception as e:
|
155 |
+
logger.error(f"QA failed: {e}")
|
156 |
+
history.append((question, "Sorry, I couldn’t process that. Try again!"))
|
157 |
+
return history, history
|
158 |
|
159 |
# Gradio UI
|
160 |
with gr.Blocks(
|
|
|
192 |
|
193 |
# Update selected paper
|
194 |
paper_dropdown.change(
|
195 |
+
fn=lambda x: (x, []), # Reset history when new paper selected
|
196 |
inputs=paper_dropdown,
|
197 |
+
outputs=[selected_paper, history_state]
|
198 |
)
|
199 |
|
200 |
# Handle chat
|
201 |
chat_btn.click(
|
202 |
fn=answer_question,
|
203 |
inputs=[selected_paper, question_input, history_state],
|
204 |
+
outputs=[chatbot, history_state]
|
205 |
+
).then(
|
206 |
+
fn=lambda: "",
|
207 |
+
inputs=None,
|
208 |
+
outputs=question_input # Clear question input after sending
|
209 |
)
|
210 |
|
211 |
# Launch the app
|
212 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|