Spaces:
Running
Running
Update src/knowledge_graph.py
Browse files- src/knowledge_graph.py +919 -919
src/knowledge_graph.py
CHANGED
@@ -1,920 +1,920 @@
|
|
1 |
-
# src/knowledge_graph.py
|
2 |
-
|
3 |
-
import networkx as nx
|
4 |
-
from pyvis.network import Network
|
5 |
-
import json
|
6 |
-
from typing import Dict, List, Any, Optional, Set, Tuple
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import matplotlib.colors as mcolors
|
9 |
-
from collections import defaultdict
|
10 |
-
|
11 |
-
class KnowledgeGraph:
|
12 |
-
"""
|
13 |
-
Handles the construction and visualization of knowledge graphs
|
14 |
-
based on the ontology data.
|
15 |
-
"""
|
16 |
-
|
17 |
-
def __init__(self, ontology_manager=None):
|
18 |
-
"""
|
19 |
-
Initialize the knowledge graph handler.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
ontology_manager: Optional ontology manager instance
|
23 |
-
"""
|
24 |
-
self.ontology_manager = ontology_manager
|
25 |
-
self.graph = None
|
26 |
-
|
27 |
-
if ontology_manager:
|
28 |
-
self.graph = ontology_manager.graph
|
29 |
-
|
30 |
-
def build_visualization_graph(
|
31 |
-
self,
|
32 |
-
include_classes: bool = True,
|
33 |
-
include_instances: bool = True,
|
34 |
-
central_entity: Optional[str] = None,
|
35 |
-
max_distance: int = 2,
|
36 |
-
include_properties: bool = False
|
37 |
-
) -> nx.Graph:
|
38 |
-
"""
|
39 |
-
Build a simplified graph for visualization purposes.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
include_classes: Whether to include class nodes
|
43 |
-
include_instances: Whether to include instance nodes
|
44 |
-
central_entity: Optional central entity to focus the graph on
|
45 |
-
max_distance: Maximum distance from central entity to include
|
46 |
-
include_properties: Whether to include property nodes
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
A NetworkX graph suitable for visualization
|
50 |
-
"""
|
51 |
-
if not self.graph:
|
52 |
-
return nx.Graph()
|
53 |
-
|
54 |
-
# Create an undirected graph for visualization
|
55 |
-
viz_graph = nx.Graph()
|
56 |
-
|
57 |
-
# If we have a central entity, extract a subgraph around it
|
58 |
-
if central_entity and central_entity in self.graph:
|
59 |
-
# Get nodes within max_distance of central_entity
|
60 |
-
nodes_to_include = set([central_entity])
|
61 |
-
current_distance = 0
|
62 |
-
current_layer = set([central_entity])
|
63 |
-
|
64 |
-
while current_distance < max_distance:
|
65 |
-
next_layer = set()
|
66 |
-
for node in current_layer:
|
67 |
-
# Get neighbors
|
68 |
-
neighbors = set(self.graph.successors(node)).union(set(self.graph.predecessors(node)))
|
69 |
-
next_layer.update(neighbors)
|
70 |
-
|
71 |
-
nodes_to_include.update(next_layer)
|
72 |
-
current_layer = next_layer
|
73 |
-
current_distance += 1
|
74 |
-
|
75 |
-
# Create subgraph
|
76 |
-
subgraph = self.graph.subgraph(nodes_to_include)
|
77 |
-
else:
|
78 |
-
subgraph = self.graph
|
79 |
-
|
80 |
-
# Add nodes to the visualization graph
|
81 |
-
for node, data in subgraph.nodes(data=True):
|
82 |
-
node_type = data.get("type")
|
83 |
-
|
84 |
-
# Skip nodes based on configuration
|
85 |
-
if node_type == "class" and not include_classes:
|
86 |
-
continue
|
87 |
-
if node_type == "instance" and not include_instances:
|
88 |
-
continue
|
89 |
-
|
90 |
-
# Get readable name for the node
|
91 |
-
if node_type == "instance" and "properties" in data:
|
92 |
-
label = data["properties"].get("name", node)
|
93 |
-
else:
|
94 |
-
label = node
|
95 |
-
|
96 |
-
# Set node attributes for visualization
|
97 |
-
viz_attrs = {
|
98 |
-
"id": node,
|
99 |
-
"label": label,
|
100 |
-
"title": self._get_node_tooltip(node, data),
|
101 |
-
"group": data.get("class_type", node_type),
|
102 |
-
"shape": "dot" if node_type == "instance" else "diamond"
|
103 |
-
}
|
104 |
-
|
105 |
-
# Highlight central entity if specified
|
106 |
-
if central_entity and node == central_entity:
|
107 |
-
viz_attrs["color"] = "#ff7f0e" # Orange for central entity
|
108 |
-
viz_attrs["size"] = 25 # Larger size for central entity
|
109 |
-
|
110 |
-
# Add the node
|
111 |
-
viz_graph.add_node(node, **viz_attrs)
|
112 |
-
|
113 |
-
# Add property nodes if configured
|
114 |
-
if include_properties and node_type == "instance" and "properties" in data:
|
115 |
-
for prop_name, prop_value in data["properties"].items():
|
116 |
-
# Create a property node
|
117 |
-
prop_node_id = f"{node}_{prop_name}"
|
118 |
-
prop_value_str = str(prop_value)
|
119 |
-
if len(prop_value_str) > 20:
|
120 |
-
prop_value_str = prop_value_str[:17] + "..."
|
121 |
-
|
122 |
-
viz_graph.add_node(
|
123 |
-
prop_node_id,
|
124 |
-
id=prop_node_id,
|
125 |
-
label=f"{prop_name}: {prop_value_str}",
|
126 |
-
title=f"{prop_name}: {prop_value}",
|
127 |
-
group="property",
|
128 |
-
shape="ellipse",
|
129 |
-
size=5
|
130 |
-
)
|
131 |
-
|
132 |
-
# Connect instance to property
|
133 |
-
viz_graph.add_edge(node, prop_node_id, label="has_property", dashes=True)
|
134 |
-
|
135 |
-
# Add edges to the visualization graph
|
136 |
-
for source, target, data in subgraph.edges(data=True):
|
137 |
-
# Only include edges between nodes that are in the viz_graph
|
138 |
-
if source in viz_graph and target in viz_graph:
|
139 |
-
# Skip property-related edges if we're manually creating them
|
140 |
-
if include_properties and (
|
141 |
-
source.startswith(target + "_") or target.startswith(source + "_")
|
142 |
-
):
|
143 |
-
continue
|
144 |
-
|
145 |
-
# Set edge attributes
|
146 |
-
edge_type = data.get("type", "unknown")
|
147 |
-
|
148 |
-
# Don't show subClassOf and instanceOf relationships if not explicitly requested
|
149 |
-
if edge_type in ["subClassOf", "instanceOf"] and not include_classes:
|
150 |
-
continue
|
151 |
-
|
152 |
-
viz_graph.add_edge(source, target, label=edge_type, title=edge_type)
|
153 |
-
|
154 |
-
return viz_graph
|
155 |
-
|
156 |
-
def _get_node_tooltip(self, node_id: str, data: Dict) -> str:
|
157 |
-
"""Generate a tooltip for a node."""
|
158 |
-
tooltip = f"<strong>ID:</strong> {node_id}<br>"
|
159 |
-
|
160 |
-
node_type = data.get("type")
|
161 |
-
if node_type:
|
162 |
-
tooltip += f"<strong>Type:</strong> {node_type}<br>"
|
163 |
-
|
164 |
-
if node_type == "instance":
|
165 |
-
tooltip += f"<strong>Class:</strong> {data.get('class_type', 'unknown')}<br>"
|
166 |
-
|
167 |
-
# Add properties
|
168 |
-
if "properties" in data:
|
169 |
-
tooltip += "<strong>Properties:</strong><br>"
|
170 |
-
for key, value in data["properties"].items():
|
171 |
-
tooltip += f"- {key}: {value}<br>"
|
172 |
-
|
173 |
-
elif node_type == "class":
|
174 |
-
tooltip += f"<strong>Description:</strong> {data.get('description', '')}<br>"
|
175 |
-
|
176 |
-
# Add properties if available
|
177 |
-
if "properties" in data:
|
178 |
-
tooltip += "<strong>Properties:</strong> " + ", ".join(data["properties"]) + "<br>"
|
179 |
-
|
180 |
-
return tooltip
|
181 |
-
|
182 |
-
def generate_html_visualization(
|
183 |
-
self,
|
184 |
-
include_classes: bool = True,
|
185 |
-
include_instances: bool = True,
|
186 |
-
central_entity: Optional[str] = None,
|
187 |
-
max_distance: int = 2,
|
188 |
-
include_properties: bool = False,
|
189 |
-
height: str = "600px",
|
190 |
-
width: str = "100%",
|
191 |
-
bgcolor: str = "#ffffff",
|
192 |
-
font_color: str = "#000000",
|
193 |
-
layout_algorithm: str = "force-directed"
|
194 |
-
) -> str:
|
195 |
-
"""
|
196 |
-
Generate an HTML visualization of the knowledge graph.
|
197 |
-
|
198 |
-
Args:
|
199 |
-
include_classes: Whether to include class nodes
|
200 |
-
include_instances: Whether to include instance nodes
|
201 |
-
central_entity: Optional central entity to focus the graph on
|
202 |
-
max_distance: Maximum distance from central entity to include
|
203 |
-
include_properties: Whether to include property nodes
|
204 |
-
height: Height of the visualization
|
205 |
-
width: Width of the visualization
|
206 |
-
bgcolor: Background color
|
207 |
-
font_color: Font color
|
208 |
-
layout_algorithm: Algorithm for layout ('force-directed', 'hierarchical', 'radial', 'circular')
|
209 |
-
|
210 |
-
Returns:
|
211 |
-
HTML string containing the visualization
|
212 |
-
"""
|
213 |
-
# Build the visualization graph
|
214 |
-
viz_graph = self.build_visualization_graph(
|
215 |
-
include_classes=include_classes,
|
216 |
-
include_instances=include_instances,
|
217 |
-
central_entity=central_entity,
|
218 |
-
max_distance=max_distance,
|
219 |
-
include_properties=include_properties
|
220 |
-
)
|
221 |
-
|
222 |
-
# Create a PyVis network
|
223 |
-
net = Network(height=height, width=width, bgcolor=bgcolor, font_color=font_color, directed=True)
|
224 |
-
|
225 |
-
# Configure physics based on the selected layout algorithm
|
226 |
-
if layout_algorithm == "force-directed":
|
227 |
-
physics_options = {
|
228 |
-
"enabled": True,
|
229 |
-
"solver": "forceAtlas2Based",
|
230 |
-
"forceAtlas2Based": {
|
231 |
-
"gravitationalConstant": -50,
|
232 |
-
"centralGravity": 0.01,
|
233 |
-
"springLength": 100,
|
234 |
-
"springConstant": 0.08
|
235 |
-
},
|
236 |
-
"stabilization": {
|
237 |
-
"enabled": True,
|
238 |
-
"iterations": 100
|
239 |
-
}
|
240 |
-
}
|
241 |
-
elif layout_algorithm == "hierarchical":
|
242 |
-
physics_options = {
|
243 |
-
"enabled": True,
|
244 |
-
"hierarchicalRepulsion": {
|
245 |
-
"centralGravity": 0.0,
|
246 |
-
"springLength": 100,
|
247 |
-
"springConstant": 0.01,
|
248 |
-
"nodeDistance": 120
|
249 |
-
},
|
250 |
-
"solver": "hierarchicalRepulsion",
|
251 |
-
"stabilization": {
|
252 |
-
"enabled": True,
|
253 |
-
"iterations": 100
|
254 |
-
}
|
255 |
-
}
|
256 |
-
|
257 |
-
# Set hierarchical layout
|
258 |
-
net.set_options("""
|
259 |
-
var options = {
|
260 |
-
"layout": {
|
261 |
-
"hierarchical": {
|
262 |
-
"enabled": true,
|
263 |
-
"direction": "UD",
|
264 |
-
"sortMethod": "directed",
|
265 |
-
"nodeSpacing": 150,
|
266 |
-
"treeSpacing": 200
|
267 |
-
}
|
268 |
-
}
|
269 |
-
}
|
270 |
-
""")
|
271 |
-
elif layout_algorithm == "radial":
|
272 |
-
physics_options = {
|
273 |
-
"enabled": True,
|
274 |
-
"solver": "repulsion",
|
275 |
-
"repulsion": {
|
276 |
-
"nodeDistance": 120,
|
277 |
-
"centralGravity": 0.2,
|
278 |
-
"springLength": 200,
|
279 |
-
"springConstant": 0.05
|
280 |
-
},
|
281 |
-
"stabilization": {
|
282 |
-
"enabled": True,
|
283 |
-
"iterations": 100
|
284 |
-
}
|
285 |
-
}
|
286 |
-
elif layout_algorithm == "circular":
|
287 |
-
physics_options = {
|
288 |
-
"enabled": False
|
289 |
-
}
|
290 |
-
|
291 |
-
# Compute circular layout and set fixed positions
|
292 |
-
pos = nx.circular_layout(viz_graph)
|
293 |
-
for node_id, coords in pos.items():
|
294 |
-
if node_id in viz_graph.nodes:
|
295 |
-
x, y = coords
|
296 |
-
viz_graph.nodes[node_id]['x'] = float(x) * 500
|
297 |
-
viz_graph.nodes[node_id]['y'] = float(y) * 500
|
298 |
-
viz_graph.nodes[node_id]['physics'] = False
|
299 |
-
|
300 |
-
# Configure other options
|
301 |
-
options = {
|
302 |
-
"nodes": {
|
303 |
-
"font": {"size": 12},
|
304 |
-
"scaling": {"min": 10, "max": 30}
|
305 |
-
},
|
306 |
-
"edges": {
|
307 |
-
"color": {"inherit": True},
|
308 |
-
"smooth": {"enabled": True, "type": "dynamic"},
|
309 |
-
"arrows": {"to": {"enabled": True, "scaleFactor": 0.5}},
|
310 |
-
"font": {"size": 10, "align": "middle"}
|
311 |
-
},
|
312 |
-
"physics": physics_options,
|
313 |
-
"interaction": {
|
314 |
-
"hover": True,
|
315 |
-
"navigationButtons": True,
|
316 |
-
"keyboard": True,
|
317 |
-
"tooltipDelay": 100
|
318 |
-
}
|
319 |
-
}
|
320 |
-
|
321 |
-
# Set options and create the network
|
322 |
-
net.options = options
|
323 |
-
net.from_nx(viz_graph)
|
324 |
-
|
325 |
-
# Add custom CSS for better visualization
|
326 |
-
custom_css = """
|
327 |
-
<style>
|
328 |
-
.vis-network {
|
329 |
-
border: 1px solid #ddd;
|
330 |
-
border-radius: 5px;
|
331 |
-
}
|
332 |
-
.vis-tooltip {
|
333 |
-
position: absolute;
|
334 |
-
background-color: #f5f5f5;
|
335 |
-
border: 1px solid #ccc;
|
336 |
-
border-radius: 4px;
|
337 |
-
padding: 10px;
|
338 |
-
font-family: Arial, sans-serif;
|
339 |
-
font-size: 12px;
|
340 |
-
color: #333;
|
341 |
-
max-width: 300px;
|
342 |
-
z-index: 9999;
|
343 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
344 |
-
}
|
345 |
-
</style>
|
346 |
-
"""
|
347 |
-
|
348 |
-
# Generate the HTML and add custom CSS
|
349 |
-
html = net.generate_html()
|
350 |
-
html = html.replace("<style>", custom_css + "<style>")
|
351 |
-
|
352 |
-
# Add legend
|
353 |
-
legend_html = self._generate_legend_html(viz_graph)
|
354 |
-
html = html.replace("</body>", legend_html + "</body>")
|
355 |
-
|
356 |
-
return html
|
357 |
-
|
358 |
-
def _generate_legend_html(self, graph: nx.Graph) -> str:
|
359 |
-
"""Generate a legend for the visualization."""
|
360 |
-
# Collect unique groups
|
361 |
-
groups = set()
|
362 |
-
for _, attrs in graph.nodes(data=True):
|
363 |
-
if "group" in attrs:
|
364 |
-
groups.add(attrs["group"])
|
365 |
-
|
366 |
-
# Generate HTML for legend
|
367 |
-
legend_html = """
|
368 |
-
<div id="graph-legend" style="position: absolute; top: 10px; right: 10px; background-color: rgba(255,255,255,0.8);
|
369 |
-
padding: 10px; border-radius: 5px; border: 1px solid #ddd; max-width: 200px;">
|
370 |
-
<strong>Legend:</strong>
|
371 |
-
<ul style="list-style-type: none; padding-left: 0; margin-top: 5px;">
|
372 |
-
"""
|
373 |
-
|
374 |
-
# Add items for each group
|
375 |
-
for group in sorted(groups):
|
376 |
-
color = "#97c2fc" # Default color
|
377 |
-
if group == "property":
|
378 |
-
color = "#ffcc99"
|
379 |
-
elif group == "class":
|
380 |
-
color = "#a1d3a2"
|
381 |
-
|
382 |
-
legend_html += f"""
|
383 |
-
<li style="margin-bottom: 5px;">
|
384 |
-
<span style="display: inline-block; width: 12px; height: 12px; border-radius: 50%;
|
385 |
-
background-color: {color}; margin-right: 5px;"></span>
|
386 |
-
{group}
|
387 |
-
</li>
|
388 |
-
"""
|
389 |
-
|
390 |
-
# Close the legend container
|
391 |
-
legend_html += """
|
392 |
-
</ul>
|
393 |
-
<div style="font-size: 10px; margin-top: 5px; color: #666;">
|
394 |
-
Double-click to zoom, drag to pan, scroll to zoom in/out
|
395 |
-
</div>
|
396 |
-
</div>
|
397 |
-
"""
|
398 |
-
|
399 |
-
return legend_html
|
400 |
-
|
401 |
-
def get_graph_statistics(self) -> Dict[str, Any]:
|
402 |
-
"""
|
403 |
-
Calculate statistics about the knowledge graph.
|
404 |
-
|
405 |
-
Returns:
|
406 |
-
A dictionary containing graph statistics
|
407 |
-
"""
|
408 |
-
if not self.graph:
|
409 |
-
return {}
|
410 |
-
|
411 |
-
# Count nodes by type
|
412 |
-
class_count = 0
|
413 |
-
instance_count = 0
|
414 |
-
property_count = 0
|
415 |
-
|
416 |
-
for _, data in self.graph.nodes(data=True):
|
417 |
-
node_type = data.get("type")
|
418 |
-
if node_type == "class":
|
419 |
-
class_count += 1
|
420 |
-
elif node_type == "instance":
|
421 |
-
instance_count += 1
|
422 |
-
if "properties" in data:
|
423 |
-
property_count += len(data["properties"])
|
424 |
-
|
425 |
-
# Count edges by type
|
426 |
-
relationship_counts = {}
|
427 |
-
for _, _, data in self.graph.edges(data=True):
|
428 |
-
rel_type = data.get("type", "unknown")
|
429 |
-
relationship_counts[rel_type] = relationship_counts.get(rel_type, 0) + 1
|
430 |
-
|
431 |
-
# Calculate graph metrics
|
432 |
-
try:
|
433 |
-
# Some metrics only work on undirected graphs
|
434 |
-
undirected = nx.Graph(self.graph)
|
435 |
-
avg_degree = sum(dict(undirected.degree()).values()) / undirected.number_of_nodes()
|
436 |
-
|
437 |
-
# Only calculate these if the graph is connected
|
438 |
-
if nx.is_connected(undirected):
|
439 |
-
avg_path_length = nx.average_shortest_path_length(undirected)
|
440 |
-
diameter = nx.diameter(undirected)
|
441 |
-
else:
|
442 |
-
# Get the largest connected component
|
443 |
-
largest_cc = max(nx.connected_components(undirected), key=len)
|
444 |
-
largest_cc_subgraph = undirected.subgraph(largest_cc)
|
445 |
-
|
446 |
-
avg_path_length = nx.average_shortest_path_length(largest_cc_subgraph)
|
447 |
-
diameter = nx.diameter(largest_cc_subgraph)
|
448 |
-
|
449 |
-
# Calculate density
|
450 |
-
density = nx.density(self.graph)
|
451 |
-
|
452 |
-
# Calculate clustering coefficient
|
453 |
-
clustering = nx.average_clustering(undirected)
|
454 |
-
except:
|
455 |
-
avg_degree = 0
|
456 |
-
avg_path_length = 0
|
457 |
-
diameter = 0
|
458 |
-
density = 0
|
459 |
-
clustering = 0
|
460 |
-
|
461 |
-
# Count different entity types
|
462 |
-
class_counts = defaultdict(int)
|
463 |
-
for _, data in self.graph.nodes(data=True):
|
464 |
-
if data.get("type") == "instance":
|
465 |
-
class_type = data.get("class_type", "unknown")
|
466 |
-
class_counts[class_type] += 1
|
467 |
-
|
468 |
-
# Get nodes with highest centrality
|
469 |
-
try:
|
470 |
-
betweenness = nx.betweenness_centrality(self.graph)
|
471 |
-
degree = nx.degree_centrality(self.graph)
|
472 |
-
|
473 |
-
# Get top 5 nodes by betweenness centrality
|
474 |
-
top_betweenness = sorted(betweenness.items(), key=lambda x: x[1], reverse=True)[:5]
|
475 |
-
top_degree = sorted(degree.items(), key=lambda x: x[1], reverse=True)[:5]
|
476 |
-
|
477 |
-
central_nodes = {
|
478 |
-
"betweenness": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_betweenness],
|
479 |
-
"degree": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_degree]
|
480 |
-
}
|
481 |
-
except:
|
482 |
-
central_nodes = {}
|
483 |
-
|
484 |
-
return {
|
485 |
-
"node_count": self.graph.number_of_nodes(),
|
486 |
-
"edge_count": self.graph.number_of_edges(),
|
487 |
-
"class_count": class_count,
|
488 |
-
"instance_count": instance_count,
|
489 |
-
"property_count": property_count,
|
490 |
-
"relationship_counts": relationship_counts,
|
491 |
-
"class_instance_counts": dict(class_counts),
|
492 |
-
"average_degree": avg_degree,
|
493 |
-
"average_path_length": avg_path_length,
|
494 |
-
"diameter": diameter,
|
495 |
-
"density": density,
|
496 |
-
"clustering_coefficient": clustering,
|
497 |
-
"central_nodes": central_nodes
|
498 |
-
}
|
499 |
-
|
500 |
-
def find_paths_between_entities(
|
501 |
-
self,
|
502 |
-
source_entity: str,
|
503 |
-
target_entity: str,
|
504 |
-
max_length: int = 3
|
505 |
-
) -> List[List[Dict]]:
|
506 |
-
"""
|
507 |
-
Find all paths between two entities up to a maximum length.
|
508 |
-
|
509 |
-
Args:
|
510 |
-
source_entity: Starting entity ID
|
511 |
-
target_entity: Target entity ID
|
512 |
-
max_length: Maximum path length
|
513 |
-
|
514 |
-
Returns:
|
515 |
-
A list of paths, where each path is a list of edge dictionaries
|
516 |
-
"""
|
517 |
-
if not self.graph or source_entity not in self.graph or target_entity not in self.graph:
|
518 |
-
return []
|
519 |
-
|
520 |
-
# Use networkx to find simple paths
|
521 |
-
try:
|
522 |
-
simple_paths = list(nx.all_simple_paths(
|
523 |
-
self.graph, source_entity, target_entity, cutoff=max_length
|
524 |
-
))
|
525 |
-
except (nx.NetworkXNoPath, nx.NodeNotFound):
|
526 |
-
return []
|
527 |
-
|
528 |
-
# Convert paths to edge sequences
|
529 |
-
paths = []
|
530 |
-
for path in simple_paths:
|
531 |
-
edge_sequence = []
|
532 |
-
for i in range(len(path) - 1):
|
533 |
-
source = path[i]
|
534 |
-
target = path[i + 1]
|
535 |
-
|
536 |
-
# There may be multiple edges between nodes
|
537 |
-
edges = self.graph.get_edge_data(source, target)
|
538 |
-
if edges:
|
539 |
-
for key, data in edges.items():
|
540 |
-
edge_sequence.append({
|
541 |
-
"source": source,
|
542 |
-
"target": target,
|
543 |
-
"type": data.get("type", "unknown")
|
544 |
-
})
|
545 |
-
|
546 |
-
# Only include the path if it has meaningful relationships
|
547 |
-
# Filter out paths that only contain structural relationships like subClassOf, instanceOf
|
548 |
-
meaningful_relationships = [edge for edge in edge_sequence
|
549 |
-
if edge["type"] not in ["subClassOf", "instanceOf"]]
|
550 |
-
|
551 |
-
if meaningful_relationships:
|
552 |
-
paths.append(edge_sequence)
|
553 |
-
|
554 |
-
# Sort paths by length (shorter paths first)
|
555 |
-
paths.sort(key=len)
|
556 |
-
|
557 |
-
return paths
|
558 |
-
|
559 |
-
def get_entity_neighborhood(
|
560 |
-
self,
|
561 |
-
entity_id: str,
|
562 |
-
max_distance: int = 1,
|
563 |
-
include_classes: bool = True
|
564 |
-
) -> Dict[str, Any]:
|
565 |
-
"""
|
566 |
-
Get the neighborhood of an entity.
|
567 |
-
|
568 |
-
Args:
|
569 |
-
entity_id: The central entity ID
|
570 |
-
max_distance: Maximum distance from the central entity
|
571 |
-
include_classes: Whether to include class relationships
|
572 |
-
|
573 |
-
Returns:
|
574 |
-
A dictionary containing the neighborhood information
|
575 |
-
"""
|
576 |
-
if not self.graph or entity_id not in self.graph:
|
577 |
-
return {}
|
578 |
-
|
579 |
-
# Get nodes within max_distance of entity_id using BFS
|
580 |
-
nodes_at_distance = {0: [entity_id]}
|
581 |
-
visited = set([entity_id])
|
582 |
-
|
583 |
-
for distance in range(1, max_distance + 1):
|
584 |
-
nodes_at_distance[distance] = []
|
585 |
-
|
586 |
-
for node in nodes_at_distance[distance - 1]:
|
587 |
-
# Get neighbors
|
588 |
-
neighbors = list(self.graph.successors(node)) + list(self.graph.predecessors(node))
|
589 |
-
|
590 |
-
for neighbor in neighbors:
|
591 |
-
# Skip class nodes if not including classes
|
592 |
-
neighbor_data = self.graph.nodes.get(neighbor, {})
|
593 |
-
if not include_classes and neighbor_data.get("type") == "class":
|
594 |
-
continue
|
595 |
-
|
596 |
-
if neighbor not in visited:
|
597 |
-
nodes_at_distance[distance].append(neighbor)
|
598 |
-
visited.add(neighbor)
|
599 |
-
|
600 |
-
# Flatten the nodes
|
601 |
-
all_nodes = [node for nodes in nodes_at_distance.values() for node in nodes]
|
602 |
-
|
603 |
-
# Extract the subgraph
|
604 |
-
subgraph = self.graph.subgraph(all_nodes)
|
605 |
-
|
606 |
-
# Build neighbor information
|
607 |
-
neighbors = []
|
608 |
-
for node in all_nodes:
|
609 |
-
if node == entity_id:
|
610 |
-
continue
|
611 |
-
|
612 |
-
node_data = self.graph.nodes[node]
|
613 |
-
|
614 |
-
# Determine the relations to central entity
|
615 |
-
relations = []
|
616 |
-
|
617 |
-
# Check direct relationships
|
618 |
-
# Check if central entity is source
|
619 |
-
edges_out = self.graph.get_edge_data(entity_id, node)
|
620 |
-
if edges_out:
|
621 |
-
for key, data in edges_out.items():
|
622 |
-
rel_type = data.get("type", "unknown")
|
623 |
-
|
624 |
-
# Skip structural relationships if not including classes
|
625 |
-
if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
|
626 |
-
continue
|
627 |
-
|
628 |
-
relations.append({
|
629 |
-
"type": rel_type,
|
630 |
-
"direction": "outgoing"
|
631 |
-
})
|
632 |
-
|
633 |
-
# Check if central entity is target
|
634 |
-
edges_in = self.graph.get_edge_data(node, entity_id)
|
635 |
-
if edges_in:
|
636 |
-
for key, data in edges_in.items():
|
637 |
-
rel_type = data.get("type", "unknown")
|
638 |
-
|
639 |
-
# Skip structural relationships if not including classes
|
640 |
-
if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
|
641 |
-
continue
|
642 |
-
|
643 |
-
relations.append({
|
644 |
-
"type": rel_type,
|
645 |
-
"direction": "incoming"
|
646 |
-
})
|
647 |
-
|
648 |
-
# Also find paths through intermediate nodes (indirect relationships)
|
649 |
-
if not relations: # Only look for indirect if no direct relationships
|
650 |
-
for path_length in range(2, max_distance + 1):
|
651 |
-
try:
|
652 |
-
# Find paths of exactly length path_length
|
653 |
-
paths = list(nx.all_simple_paths(
|
654 |
-
self.graph, entity_id, node, cutoff=path_length, min_edges=path_length
|
655 |
-
))
|
656 |
-
|
657 |
-
for path in paths:
|
658 |
-
if len(path) > 1: # Path should have at least 2 nodes
|
659 |
-
intermediate_nodes = path[1:-1] # Skip source and target
|
660 |
-
|
661 |
-
# Format the path as a relation
|
662 |
-
path_relation = {
|
663 |
-
"type": "indirect_connection",
|
664 |
-
"direction": "outgoing",
|
665 |
-
"path_length": len(path) - 1,
|
666 |
-
"intermediates": intermediate_nodes
|
667 |
-
}
|
668 |
-
|
669 |
-
relations.append(path_relation)
|
670 |
-
|
671 |
-
# Only need one example of an indirect path
|
672 |
-
break
|
673 |
-
except (nx.NetworkXNoPath, nx.NodeNotFound):
|
674 |
-
pass
|
675 |
-
|
676 |
-
# Only include neighbors with relations
|
677 |
-
if relations:
|
678 |
-
neighbors.append({
|
679 |
-
"id": node,
|
680 |
-
"type": node_data.get("type"),
|
681 |
-
"class_type": node_data.get("class_type"),
|
682 |
-
"properties": node_data.get("properties", {}),
|
683 |
-
"relations": relations,
|
684 |
-
"distance": next(dist for dist, nodes in nodes_at_distance.items() if node in nodes)
|
685 |
-
})
|
686 |
-
|
687 |
-
# Group neighbors by distance
|
688 |
-
neighbors_by_distance = defaultdict(list)
|
689 |
-
for neighbor in neighbors:
|
690 |
-
neighbors_by_distance[neighbor["distance"]].append(neighbor)
|
691 |
-
|
692 |
-
# Get central entity info
|
693 |
-
central_data = self.graph.nodes[entity_id]
|
694 |
-
|
695 |
-
return {
|
696 |
-
"central_entity": {
|
697 |
-
"id": entity_id,
|
698 |
-
"type": central_data.get("type"),
|
699 |
-
"class_type": central_data.get("class_type", ""),
|
700 |
-
"properties": central_data.get("properties", {})
|
701 |
-
},
|
702 |
-
"neighbors": neighbors,
|
703 |
-
"neighbors_by_distance": dict(neighbors_by_distance),
|
704 |
-
"total_neighbors": len(neighbors)
|
705 |
-
}
|
706 |
-
|
707 |
-
def find_common_patterns(self) -> List[Dict[str, Any]]:
|
708 |
-
"""
|
709 |
-
Find common patterns and structures in the knowledge graph.
|
710 |
-
|
711 |
-
Returns:
|
712 |
-
A list of pattern dictionaries
|
713 |
-
"""
|
714 |
-
if not self.graph:
|
715 |
-
return []
|
716 |
-
|
717 |
-
patterns = []
|
718 |
-
|
719 |
-
# Find common relationship patterns
|
720 |
-
relationship_patterns = self._find_relationship_patterns()
|
721 |
-
if relationship_patterns:
|
722 |
-
patterns.extend(relationship_patterns)
|
723 |
-
|
724 |
-
# Find hub entities (entities with many connections)
|
725 |
-
hub_entities = self._find_hub_entities()
|
726 |
-
if hub_entities:
|
727 |
-
patterns.append({
|
728 |
-
"type": "hub_entities",
|
729 |
-
"description": "Entities with high connectivity serving as knowledge hubs",
|
730 |
-
"entities": hub_entities
|
731 |
-
})
|
732 |
-
|
733 |
-
# Find common property patterns
|
734 |
-
property_patterns = self._find_property_patterns()
|
735 |
-
if property_patterns:
|
736 |
-
patterns.extend(property_patterns)
|
737 |
-
|
738 |
-
return patterns
|
739 |
-
|
740 |
-
def _find_relationship_patterns(self) -> List[Dict[str, Any]]:
|
741 |
-
"""Find common relationship patterns in the graph."""
|
742 |
-
# Count relationship triplets (source_type, relation, target_type)
|
743 |
-
triplet_counts = defaultdict(int)
|
744 |
-
|
745 |
-
for source, target, data in self.graph.edges(data=True):
|
746 |
-
rel_type = data.get("type", "unknown")
|
747 |
-
|
748 |
-
# Skip structural relationships
|
749 |
-
if rel_type in ["subClassOf", "instanceOf"]:
|
750 |
-
continue
|
751 |
-
|
752 |
-
# Get node types
|
753 |
-
source_data = self.graph.nodes[source]
|
754 |
-
target_data = self.graph.nodes[target]
|
755 |
-
|
756 |
-
source_type = (
|
757 |
-
source_data.get("class_type")
|
758 |
-
if source_data.get("type") == "instance"
|
759 |
-
else source_data.get("type")
|
760 |
-
)
|
761 |
-
|
762 |
-
target_type = (
|
763 |
-
target_data.get("class_type")
|
764 |
-
if target_data.get("type") == "instance"
|
765 |
-
else target_data.get("type")
|
766 |
-
)
|
767 |
-
|
768 |
-
if source_type and target_type:
|
769 |
-
triplet = (source_type, rel_type, target_type)
|
770 |
-
triplet_counts[triplet] += 1
|
771 |
-
|
772 |
-
# Get patterns with significant frequency (more than 1 occurrence)
|
773 |
-
patterns = []
|
774 |
-
for triplet, count in triplet_counts.items():
|
775 |
-
if count > 1:
|
776 |
-
source_type, rel_type, target_type = triplet
|
777 |
-
|
778 |
-
# Find examples of this pattern
|
779 |
-
examples = []
|
780 |
-
for source, target, data in self.graph.edges(data=True):
|
781 |
-
if len(examples) >= 3: # Limit to 3 examples
|
782 |
-
break
|
783 |
-
|
784 |
-
rel = data.get("type", "unknown")
|
785 |
-
if rel != rel_type:
|
786 |
-
continue
|
787 |
-
|
788 |
-
source_data = self.graph.nodes[source]
|
789 |
-
target_data = self.graph.nodes[target]
|
790 |
-
|
791 |
-
current_source_type = (
|
792 |
-
source_data.get("class_type")
|
793 |
-
if source_data.get("type") == "instance"
|
794 |
-
else source_data.get("type")
|
795 |
-
)
|
796 |
-
|
797 |
-
current_target_type = (
|
798 |
-
target_data.get("class_type")
|
799 |
-
if target_data.get("type") == "instance"
|
800 |
-
else target_data.get("type")
|
801 |
-
)
|
802 |
-
|
803 |
-
if current_source_type == source_type and current_target_type == target_type:
|
804 |
-
# Get readable names if available
|
805 |
-
source_name = source
|
806 |
-
if source_data.get("type") == "instance" and "properties" in source_data:
|
807 |
-
properties = source_data["properties"]
|
808 |
-
if "name" in properties:
|
809 |
-
source_name = properties["name"]
|
810 |
-
|
811 |
-
target_name = target
|
812 |
-
if target_data.get("type") == "instance" and "properties" in target_data:
|
813 |
-
properties = target_data["properties"]
|
814 |
-
if "name" in properties:
|
815 |
-
target_name = properties["name"]
|
816 |
-
|
817 |
-
examples.append({
|
818 |
-
"source": source,
|
819 |
-
"source_name": source_name,
|
820 |
-
"target": target,
|
821 |
-
"target_name": target_name,
|
822 |
-
"relationship": rel_type
|
823 |
-
})
|
824 |
-
|
825 |
-
patterns.append({
|
826 |
-
"type": "relationship_pattern",
|
827 |
-
"description": f"{source_type} {rel_type} {target_type}",
|
828 |
-
"source_type": source_type,
|
829 |
-
"relationship": rel_type,
|
830 |
-
"target_type": target_type,
|
831 |
-
"count": count,
|
832 |
-
"examples": examples
|
833 |
-
})
|
834 |
-
|
835 |
-
# Sort by frequency
|
836 |
-
patterns.sort(key=lambda x: x["count"], reverse=True)
|
837 |
-
|
838 |
-
return patterns
|
839 |
-
|
840 |
-
def _find_hub_entities(self) -> List[Dict[str, Any]]:
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
def _find_property_patterns(self) -> List[Dict[str, Any]]:
|
885 |
-
"""Find common property patterns in instance data."""
|
886 |
-
# Track properties by class type
|
887 |
-
properties_by_class = defaultdict(lambda: defaultdict(int))
|
888 |
-
|
889 |
-
for node, data in self.graph.nodes(data=True):
|
890 |
-
if data.get("type") == "instance":
|
891 |
-
class_type = data.get("class_type", "unknown")
|
892 |
-
|
893 |
-
if "properties" in data:
|
894 |
-
for prop in data["properties"].keys():
|
895 |
-
properties_by_class[class_type][prop] += 1
|
896 |
-
|
897 |
-
# Find common property combinations
|
898 |
-
patterns = []
|
899 |
-
for class_type, props in properties_by_class.items():
|
900 |
-
# Sort properties by frequency
|
901 |
-
sorted_props = sorted(props.items(), key=lambda x: x[1], reverse=True)
|
902 |
-
|
903 |
-
# Only include classes with multiple instances
|
904 |
-
class_instances = sum(1 for _, data in self.graph.nodes(data=True)
|
905 |
-
if data.get("type") == "instance" and data.get("class_type") == class_type)
|
906 |
-
|
907 |
-
if class_instances > 1:
|
908 |
-
common_props = [prop for prop, count in sorted_props if count > 1]
|
909 |
-
|
910 |
-
if common_props:
|
911 |
-
patterns.append({
|
912 |
-
"type": "property_pattern",
|
913 |
-
"description": f"Common properties for {class_type} instances",
|
914 |
-
"class_type": class_type,
|
915 |
-
"instance_count": class_instances,
|
916 |
-
"common_properties": common_props,
|
917 |
-
"property_frequencies": {prop: count for prop, count in sorted_props}
|
918 |
-
})
|
919 |
-
|
920 |
return patterns
|
|
|
1 |
+
# src/knowledge_graph.py
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from pyvis.network import Network
|
5 |
+
import json
|
6 |
+
from typing import Dict, List, Any, Optional, Set, Tuple
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.colors as mcolors
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
class KnowledgeGraph:
|
12 |
+
"""
|
13 |
+
Handles the construction and visualization of knowledge graphs
|
14 |
+
based on the ontology data.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, ontology_manager=None):
|
18 |
+
"""
|
19 |
+
Initialize the knowledge graph handler.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
ontology_manager: Optional ontology manager instance
|
23 |
+
"""
|
24 |
+
self.ontology_manager = ontology_manager
|
25 |
+
self.graph = None
|
26 |
+
|
27 |
+
if ontology_manager:
|
28 |
+
self.graph = ontology_manager.graph
|
29 |
+
|
30 |
+
def build_visualization_graph(
|
31 |
+
self,
|
32 |
+
include_classes: bool = True,
|
33 |
+
include_instances: bool = True,
|
34 |
+
central_entity: Optional[str] = None,
|
35 |
+
max_distance: int = 2,
|
36 |
+
include_properties: bool = False
|
37 |
+
) -> nx.Graph:
|
38 |
+
"""
|
39 |
+
Build a simplified graph for visualization purposes.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
include_classes: Whether to include class nodes
|
43 |
+
include_instances: Whether to include instance nodes
|
44 |
+
central_entity: Optional central entity to focus the graph on
|
45 |
+
max_distance: Maximum distance from central entity to include
|
46 |
+
include_properties: Whether to include property nodes
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
A NetworkX graph suitable for visualization
|
50 |
+
"""
|
51 |
+
if not self.graph:
|
52 |
+
return nx.Graph()
|
53 |
+
|
54 |
+
# Create an undirected graph for visualization
|
55 |
+
viz_graph = nx.Graph()
|
56 |
+
|
57 |
+
# If we have a central entity, extract a subgraph around it
|
58 |
+
if central_entity and central_entity in self.graph:
|
59 |
+
# Get nodes within max_distance of central_entity
|
60 |
+
nodes_to_include = set([central_entity])
|
61 |
+
current_distance = 0
|
62 |
+
current_layer = set([central_entity])
|
63 |
+
|
64 |
+
while current_distance < max_distance:
|
65 |
+
next_layer = set()
|
66 |
+
for node in current_layer:
|
67 |
+
# Get neighbors
|
68 |
+
neighbors = set(self.graph.successors(node)).union(set(self.graph.predecessors(node)))
|
69 |
+
next_layer.update(neighbors)
|
70 |
+
|
71 |
+
nodes_to_include.update(next_layer)
|
72 |
+
current_layer = next_layer
|
73 |
+
current_distance += 1
|
74 |
+
|
75 |
+
# Create subgraph
|
76 |
+
subgraph = self.graph.subgraph(nodes_to_include)
|
77 |
+
else:
|
78 |
+
subgraph = self.graph
|
79 |
+
|
80 |
+
# Add nodes to the visualization graph
|
81 |
+
for node, data in subgraph.nodes(data=True):
|
82 |
+
node_type = data.get("type")
|
83 |
+
|
84 |
+
# Skip nodes based on configuration
|
85 |
+
if node_type == "class" and not include_classes:
|
86 |
+
continue
|
87 |
+
if node_type == "instance" and not include_instances:
|
88 |
+
continue
|
89 |
+
|
90 |
+
# Get readable name for the node
|
91 |
+
if node_type == "instance" and "properties" in data:
|
92 |
+
label = data["properties"].get("name", node)
|
93 |
+
else:
|
94 |
+
label = node
|
95 |
+
|
96 |
+
# Set node attributes for visualization
|
97 |
+
viz_attrs = {
|
98 |
+
"id": node,
|
99 |
+
"label": label,
|
100 |
+
"title": self._get_node_tooltip(node, data),
|
101 |
+
"group": data.get("class_type", node_type),
|
102 |
+
"shape": "dot" if node_type == "instance" else "diamond"
|
103 |
+
}
|
104 |
+
|
105 |
+
# Highlight central entity if specified
|
106 |
+
if central_entity and node == central_entity:
|
107 |
+
viz_attrs["color"] = "#ff7f0e" # Orange for central entity
|
108 |
+
viz_attrs["size"] = 25 # Larger size for central entity
|
109 |
+
|
110 |
+
# Add the node
|
111 |
+
viz_graph.add_node(node, **viz_attrs)
|
112 |
+
|
113 |
+
# Add property nodes if configured
|
114 |
+
if include_properties and node_type == "instance" and "properties" in data:
|
115 |
+
for prop_name, prop_value in data["properties"].items():
|
116 |
+
# Create a property node
|
117 |
+
prop_node_id = f"{node}_{prop_name}"
|
118 |
+
prop_value_str = str(prop_value)
|
119 |
+
if len(prop_value_str) > 20:
|
120 |
+
prop_value_str = prop_value_str[:17] + "..."
|
121 |
+
|
122 |
+
viz_graph.add_node(
|
123 |
+
prop_node_id,
|
124 |
+
id=prop_node_id,
|
125 |
+
label=f"{prop_name}: {prop_value_str}",
|
126 |
+
title=f"{prop_name}: {prop_value}",
|
127 |
+
group="property",
|
128 |
+
shape="ellipse",
|
129 |
+
size=5
|
130 |
+
)
|
131 |
+
|
132 |
+
# Connect instance to property
|
133 |
+
viz_graph.add_edge(node, prop_node_id, label="has_property", dashes=True)
|
134 |
+
|
135 |
+
# Add edges to the visualization graph
|
136 |
+
for source, target, data in subgraph.edges(data=True):
|
137 |
+
# Only include edges between nodes that are in the viz_graph
|
138 |
+
if source in viz_graph and target in viz_graph:
|
139 |
+
# Skip property-related edges if we're manually creating them
|
140 |
+
if include_properties and (
|
141 |
+
source.startswith(target + "_") or target.startswith(source + "_")
|
142 |
+
):
|
143 |
+
continue
|
144 |
+
|
145 |
+
# Set edge attributes
|
146 |
+
edge_type = data.get("type", "unknown")
|
147 |
+
|
148 |
+
# Don't show subClassOf and instanceOf relationships if not explicitly requested
|
149 |
+
if edge_type in ["subClassOf", "instanceOf"] and not include_classes:
|
150 |
+
continue
|
151 |
+
|
152 |
+
viz_graph.add_edge(source, target, label=edge_type, title=edge_type)
|
153 |
+
|
154 |
+
return viz_graph
|
155 |
+
|
156 |
+
def _get_node_tooltip(self, node_id: str, data: Dict) -> str:
|
157 |
+
"""Generate a tooltip for a node."""
|
158 |
+
tooltip = f"<strong>ID:</strong> {node_id}<br>"
|
159 |
+
|
160 |
+
node_type = data.get("type")
|
161 |
+
if node_type:
|
162 |
+
tooltip += f"<strong>Type:</strong> {node_type}<br>"
|
163 |
+
|
164 |
+
if node_type == "instance":
|
165 |
+
tooltip += f"<strong>Class:</strong> {data.get('class_type', 'unknown')}<br>"
|
166 |
+
|
167 |
+
# Add properties
|
168 |
+
if "properties" in data:
|
169 |
+
tooltip += "<strong>Properties:</strong><br>"
|
170 |
+
for key, value in data["properties"].items():
|
171 |
+
tooltip += f"- {key}: {value}<br>"
|
172 |
+
|
173 |
+
elif node_type == "class":
|
174 |
+
tooltip += f"<strong>Description:</strong> {data.get('description', '')}<br>"
|
175 |
+
|
176 |
+
# Add properties if available
|
177 |
+
if "properties" in data:
|
178 |
+
tooltip += "<strong>Properties:</strong> " + ", ".join(data["properties"]) + "<br>"
|
179 |
+
|
180 |
+
return tooltip
|
181 |
+
|
182 |
+
def generate_html_visualization(
|
183 |
+
self,
|
184 |
+
include_classes: bool = True,
|
185 |
+
include_instances: bool = True,
|
186 |
+
central_entity: Optional[str] = None,
|
187 |
+
max_distance: int = 2,
|
188 |
+
include_properties: bool = False,
|
189 |
+
height: str = "600px",
|
190 |
+
width: str = "100%",
|
191 |
+
bgcolor: str = "#ffffff",
|
192 |
+
font_color: str = "#000000",
|
193 |
+
layout_algorithm: str = "force-directed"
|
194 |
+
) -> str:
|
195 |
+
"""
|
196 |
+
Generate an HTML visualization of the knowledge graph.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
include_classes: Whether to include class nodes
|
200 |
+
include_instances: Whether to include instance nodes
|
201 |
+
central_entity: Optional central entity to focus the graph on
|
202 |
+
max_distance: Maximum distance from central entity to include
|
203 |
+
include_properties: Whether to include property nodes
|
204 |
+
height: Height of the visualization
|
205 |
+
width: Width of the visualization
|
206 |
+
bgcolor: Background color
|
207 |
+
font_color: Font color
|
208 |
+
layout_algorithm: Algorithm for layout ('force-directed', 'hierarchical', 'radial', 'circular')
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
HTML string containing the visualization
|
212 |
+
"""
|
213 |
+
# Build the visualization graph
|
214 |
+
viz_graph = self.build_visualization_graph(
|
215 |
+
include_classes=include_classes,
|
216 |
+
include_instances=include_instances,
|
217 |
+
central_entity=central_entity,
|
218 |
+
max_distance=max_distance,
|
219 |
+
include_properties=include_properties
|
220 |
+
)
|
221 |
+
|
222 |
+
# Create a PyVis network
|
223 |
+
net = Network(height=height, width=width, bgcolor=bgcolor, font_color=font_color, directed=True)
|
224 |
+
|
225 |
+
# Configure physics based on the selected layout algorithm
|
226 |
+
if layout_algorithm == "force-directed":
|
227 |
+
physics_options = {
|
228 |
+
"enabled": True,
|
229 |
+
"solver": "forceAtlas2Based",
|
230 |
+
"forceAtlas2Based": {
|
231 |
+
"gravitationalConstant": -50,
|
232 |
+
"centralGravity": 0.01,
|
233 |
+
"springLength": 100,
|
234 |
+
"springConstant": 0.08
|
235 |
+
},
|
236 |
+
"stabilization": {
|
237 |
+
"enabled": True,
|
238 |
+
"iterations": 100
|
239 |
+
}
|
240 |
+
}
|
241 |
+
elif layout_algorithm == "hierarchical":
|
242 |
+
physics_options = {
|
243 |
+
"enabled": True,
|
244 |
+
"hierarchicalRepulsion": {
|
245 |
+
"centralGravity": 0.0,
|
246 |
+
"springLength": 100,
|
247 |
+
"springConstant": 0.01,
|
248 |
+
"nodeDistance": 120
|
249 |
+
},
|
250 |
+
"solver": "hierarchicalRepulsion",
|
251 |
+
"stabilization": {
|
252 |
+
"enabled": True,
|
253 |
+
"iterations": 100
|
254 |
+
}
|
255 |
+
}
|
256 |
+
|
257 |
+
# Set hierarchical layout
|
258 |
+
net.set_options("""
|
259 |
+
var options = {
|
260 |
+
"layout": {
|
261 |
+
"hierarchical": {
|
262 |
+
"enabled": true,
|
263 |
+
"direction": "UD",
|
264 |
+
"sortMethod": "directed",
|
265 |
+
"nodeSpacing": 150,
|
266 |
+
"treeSpacing": 200
|
267 |
+
}
|
268 |
+
}
|
269 |
+
}
|
270 |
+
""")
|
271 |
+
elif layout_algorithm == "radial":
|
272 |
+
physics_options = {
|
273 |
+
"enabled": True,
|
274 |
+
"solver": "repulsion",
|
275 |
+
"repulsion": {
|
276 |
+
"nodeDistance": 120,
|
277 |
+
"centralGravity": 0.2,
|
278 |
+
"springLength": 200,
|
279 |
+
"springConstant": 0.05
|
280 |
+
},
|
281 |
+
"stabilization": {
|
282 |
+
"enabled": True,
|
283 |
+
"iterations": 100
|
284 |
+
}
|
285 |
+
}
|
286 |
+
elif layout_algorithm == "circular":
|
287 |
+
physics_options = {
|
288 |
+
"enabled": False
|
289 |
+
}
|
290 |
+
|
291 |
+
# Compute circular layout and set fixed positions
|
292 |
+
pos = nx.circular_layout(viz_graph)
|
293 |
+
for node_id, coords in pos.items():
|
294 |
+
if node_id in viz_graph.nodes:
|
295 |
+
x, y = coords
|
296 |
+
viz_graph.nodes[node_id]['x'] = float(x) * 500
|
297 |
+
viz_graph.nodes[node_id]['y'] = float(y) * 500
|
298 |
+
viz_graph.nodes[node_id]['physics'] = False
|
299 |
+
|
300 |
+
# Configure other options
|
301 |
+
options = {
|
302 |
+
"nodes": {
|
303 |
+
"font": {"size": 12},
|
304 |
+
"scaling": {"min": 10, "max": 30}
|
305 |
+
},
|
306 |
+
"edges": {
|
307 |
+
"color": {"inherit": True},
|
308 |
+
"smooth": {"enabled": True, "type": "dynamic"},
|
309 |
+
"arrows": {"to": {"enabled": True, "scaleFactor": 0.5}},
|
310 |
+
"font": {"size": 10, "align": "middle"}
|
311 |
+
},
|
312 |
+
"physics": physics_options,
|
313 |
+
"interaction": {
|
314 |
+
"hover": True,
|
315 |
+
"navigationButtons": True,
|
316 |
+
"keyboard": True,
|
317 |
+
"tooltipDelay": 100
|
318 |
+
}
|
319 |
+
}
|
320 |
+
|
321 |
+
# Set options and create the network
|
322 |
+
net.options = options
|
323 |
+
net.from_nx(viz_graph)
|
324 |
+
|
325 |
+
# Add custom CSS for better visualization
|
326 |
+
custom_css = """
|
327 |
+
<style>
|
328 |
+
.vis-network {
|
329 |
+
border: 1px solid #ddd;
|
330 |
+
border-radius: 5px;
|
331 |
+
}
|
332 |
+
.vis-tooltip {
|
333 |
+
position: absolute;
|
334 |
+
background-color: #f5f5f5;
|
335 |
+
border: 1px solid #ccc;
|
336 |
+
border-radius: 4px;
|
337 |
+
padding: 10px;
|
338 |
+
font-family: Arial, sans-serif;
|
339 |
+
font-size: 12px;
|
340 |
+
color: #333;
|
341 |
+
max-width: 300px;
|
342 |
+
z-index: 9999;
|
343 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
344 |
+
}
|
345 |
+
</style>
|
346 |
+
"""
|
347 |
+
|
348 |
+
# Generate the HTML and add custom CSS
|
349 |
+
html = net.generate_html()
|
350 |
+
html = html.replace("<style>", custom_css + "<style>")
|
351 |
+
|
352 |
+
# Add legend
|
353 |
+
legend_html = self._generate_legend_html(viz_graph)
|
354 |
+
html = html.replace("</body>", legend_html + "</body>")
|
355 |
+
|
356 |
+
return html
|
357 |
+
|
358 |
+
def _generate_legend_html(self, graph: nx.Graph) -> str:
|
359 |
+
"""Generate a legend for the visualization."""
|
360 |
+
# Collect unique groups
|
361 |
+
groups = set()
|
362 |
+
for _, attrs in graph.nodes(data=True):
|
363 |
+
if "group" in attrs:
|
364 |
+
groups.add(attrs["group"])
|
365 |
+
|
366 |
+
# Generate HTML for legend
|
367 |
+
legend_html = """
|
368 |
+
<div id="graph-legend" style="position: absolute; top: 10px; right: 10px; background-color: rgba(255,255,255,0.8);
|
369 |
+
padding: 10px; border-radius: 5px; border: 1px solid #ddd; max-width: 200px;">
|
370 |
+
<strong>Legend:</strong>
|
371 |
+
<ul style="list-style-type: none; padding-left: 0; margin-top: 5px;">
|
372 |
+
"""
|
373 |
+
|
374 |
+
# Add items for each group
|
375 |
+
for group in sorted(groups):
|
376 |
+
color = "#97c2fc" # Default color
|
377 |
+
if group == "property":
|
378 |
+
color = "#ffcc99"
|
379 |
+
elif group == "class":
|
380 |
+
color = "#a1d3a2"
|
381 |
+
|
382 |
+
legend_html += f"""
|
383 |
+
<li style="margin-bottom: 5px;">
|
384 |
+
<span style="display: inline-block; width: 12px; height: 12px; border-radius: 50%;
|
385 |
+
background-color: {color}; margin-right: 5px;"></span>
|
386 |
+
{group}
|
387 |
+
</li>
|
388 |
+
"""
|
389 |
+
|
390 |
+
# Close the legend container
|
391 |
+
legend_html += """
|
392 |
+
</ul>
|
393 |
+
<div style="font-size: 10px; margin-top: 5px; color: #666;">
|
394 |
+
Double-click to zoom, drag to pan, scroll to zoom in/out
|
395 |
+
</div>
|
396 |
+
</div>
|
397 |
+
"""
|
398 |
+
|
399 |
+
return legend_html
|
400 |
+
|
401 |
+
def get_graph_statistics(self) -> Dict[str, Any]:
|
402 |
+
"""
|
403 |
+
Calculate statistics about the knowledge graph.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
A dictionary containing graph statistics
|
407 |
+
"""
|
408 |
+
if not self.graph:
|
409 |
+
return {}
|
410 |
+
|
411 |
+
# Count nodes by type
|
412 |
+
class_count = 0
|
413 |
+
instance_count = 0
|
414 |
+
property_count = 0
|
415 |
+
|
416 |
+
for _, data in self.graph.nodes(data=True):
|
417 |
+
node_type = data.get("type")
|
418 |
+
if node_type == "class":
|
419 |
+
class_count += 1
|
420 |
+
elif node_type == "instance":
|
421 |
+
instance_count += 1
|
422 |
+
if "properties" in data:
|
423 |
+
property_count += len(data["properties"])
|
424 |
+
|
425 |
+
# Count edges by type
|
426 |
+
relationship_counts = {}
|
427 |
+
for _, _, data in self.graph.edges(data=True):
|
428 |
+
rel_type = data.get("type", "unknown")
|
429 |
+
relationship_counts[rel_type] = relationship_counts.get(rel_type, 0) + 1
|
430 |
+
|
431 |
+
# Calculate graph metrics
|
432 |
+
try:
|
433 |
+
# Some metrics only work on undirected graphs
|
434 |
+
undirected = nx.Graph(self.graph)
|
435 |
+
avg_degree = sum(dict(undirected.degree()).values()) / undirected.number_of_nodes()
|
436 |
+
|
437 |
+
# Only calculate these if the graph is connected
|
438 |
+
if nx.is_connected(undirected):
|
439 |
+
avg_path_length = nx.average_shortest_path_length(undirected)
|
440 |
+
diameter = nx.diameter(undirected)
|
441 |
+
else:
|
442 |
+
# Get the largest connected component
|
443 |
+
largest_cc = max(nx.connected_components(undirected), key=len)
|
444 |
+
largest_cc_subgraph = undirected.subgraph(largest_cc)
|
445 |
+
|
446 |
+
avg_path_length = nx.average_shortest_path_length(largest_cc_subgraph)
|
447 |
+
diameter = nx.diameter(largest_cc_subgraph)
|
448 |
+
|
449 |
+
# Calculate density
|
450 |
+
density = nx.density(self.graph)
|
451 |
+
|
452 |
+
# Calculate clustering coefficient
|
453 |
+
clustering = nx.average_clustering(undirected)
|
454 |
+
except:
|
455 |
+
avg_degree = 0
|
456 |
+
avg_path_length = 0
|
457 |
+
diameter = 0
|
458 |
+
density = 0
|
459 |
+
clustering = 0
|
460 |
+
|
461 |
+
# Count different entity types
|
462 |
+
class_counts = defaultdict(int)
|
463 |
+
for _, data in self.graph.nodes(data=True):
|
464 |
+
if data.get("type") == "instance":
|
465 |
+
class_type = data.get("class_type", "unknown")
|
466 |
+
class_counts[class_type] += 1
|
467 |
+
|
468 |
+
# Get nodes with highest centrality
|
469 |
+
try:
|
470 |
+
betweenness = nx.betweenness_centrality(self.graph)
|
471 |
+
degree = nx.degree_centrality(self.graph)
|
472 |
+
|
473 |
+
# Get top 5 nodes by betweenness centrality
|
474 |
+
top_betweenness = sorted(betweenness.items(), key=lambda x: x[1], reverse=True)[:5]
|
475 |
+
top_degree = sorted(degree.items(), key=lambda x: x[1], reverse=True)[:5]
|
476 |
+
|
477 |
+
central_nodes = {
|
478 |
+
"betweenness": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_betweenness],
|
479 |
+
"degree": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_degree]
|
480 |
+
}
|
481 |
+
except:
|
482 |
+
central_nodes = {}
|
483 |
+
|
484 |
+
return {
|
485 |
+
"node_count": self.graph.number_of_nodes(),
|
486 |
+
"edge_count": self.graph.number_of_edges(),
|
487 |
+
"class_count": class_count,
|
488 |
+
"instance_count": instance_count,
|
489 |
+
"property_count": property_count,
|
490 |
+
"relationship_counts": relationship_counts,
|
491 |
+
"class_instance_counts": dict(class_counts),
|
492 |
+
"average_degree": avg_degree,
|
493 |
+
"average_path_length": avg_path_length,
|
494 |
+
"diameter": diameter,
|
495 |
+
"density": density,
|
496 |
+
"clustering_coefficient": clustering,
|
497 |
+
"central_nodes": central_nodes
|
498 |
+
}
|
499 |
+
|
500 |
+
def find_paths_between_entities(
|
501 |
+
self,
|
502 |
+
source_entity: str,
|
503 |
+
target_entity: str,
|
504 |
+
max_length: int = 3
|
505 |
+
) -> List[List[Dict]]:
|
506 |
+
"""
|
507 |
+
Find all paths between two entities up to a maximum length.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
source_entity: Starting entity ID
|
511 |
+
target_entity: Target entity ID
|
512 |
+
max_length: Maximum path length
|
513 |
+
|
514 |
+
Returns:
|
515 |
+
A list of paths, where each path is a list of edge dictionaries
|
516 |
+
"""
|
517 |
+
if not self.graph or source_entity not in self.graph or target_entity not in self.graph:
|
518 |
+
return []
|
519 |
+
|
520 |
+
# Use networkx to find simple paths
|
521 |
+
try:
|
522 |
+
simple_paths = list(nx.all_simple_paths(
|
523 |
+
self.graph, source_entity, target_entity, cutoff=max_length
|
524 |
+
))
|
525 |
+
except (nx.NetworkXNoPath, nx.NodeNotFound):
|
526 |
+
return []
|
527 |
+
|
528 |
+
# Convert paths to edge sequences
|
529 |
+
paths = []
|
530 |
+
for path in simple_paths:
|
531 |
+
edge_sequence = []
|
532 |
+
for i in range(len(path) - 1):
|
533 |
+
source = path[i]
|
534 |
+
target = path[i + 1]
|
535 |
+
|
536 |
+
# There may be multiple edges between nodes
|
537 |
+
edges = self.graph.get_edge_data(source, target)
|
538 |
+
if edges:
|
539 |
+
for key, data in edges.items():
|
540 |
+
edge_sequence.append({
|
541 |
+
"source": source,
|
542 |
+
"target": target,
|
543 |
+
"type": data.get("type", "unknown")
|
544 |
+
})
|
545 |
+
|
546 |
+
# Only include the path if it has meaningful relationships
|
547 |
+
# Filter out paths that only contain structural relationships like subClassOf, instanceOf
|
548 |
+
meaningful_relationships = [edge for edge in edge_sequence
|
549 |
+
if edge["type"] not in ["subClassOf", "instanceOf"]]
|
550 |
+
|
551 |
+
if meaningful_relationships:
|
552 |
+
paths.append(edge_sequence)
|
553 |
+
|
554 |
+
# Sort paths by length (shorter paths first)
|
555 |
+
paths.sort(key=len)
|
556 |
+
|
557 |
+
return paths
|
558 |
+
|
559 |
+
def get_entity_neighborhood(
|
560 |
+
self,
|
561 |
+
entity_id: str,
|
562 |
+
max_distance: int = 1,
|
563 |
+
include_classes: bool = True
|
564 |
+
) -> Dict[str, Any]:
|
565 |
+
"""
|
566 |
+
Get the neighborhood of an entity.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
entity_id: The central entity ID
|
570 |
+
max_distance: Maximum distance from the central entity
|
571 |
+
include_classes: Whether to include class relationships
|
572 |
+
|
573 |
+
Returns:
|
574 |
+
A dictionary containing the neighborhood information
|
575 |
+
"""
|
576 |
+
if not self.graph or entity_id not in self.graph:
|
577 |
+
return {}
|
578 |
+
|
579 |
+
# Get nodes within max_distance of entity_id using BFS
|
580 |
+
nodes_at_distance = {0: [entity_id]}
|
581 |
+
visited = set([entity_id])
|
582 |
+
|
583 |
+
for distance in range(1, max_distance + 1):
|
584 |
+
nodes_at_distance[distance] = []
|
585 |
+
|
586 |
+
for node in nodes_at_distance[distance - 1]:
|
587 |
+
# Get neighbors
|
588 |
+
neighbors = list(self.graph.successors(node)) + list(self.graph.predecessors(node))
|
589 |
+
|
590 |
+
for neighbor in neighbors:
|
591 |
+
# Skip class nodes if not including classes
|
592 |
+
neighbor_data = self.graph.nodes.get(neighbor, {})
|
593 |
+
if not include_classes and neighbor_data.get("type") == "class":
|
594 |
+
continue
|
595 |
+
|
596 |
+
if neighbor not in visited:
|
597 |
+
nodes_at_distance[distance].append(neighbor)
|
598 |
+
visited.add(neighbor)
|
599 |
+
|
600 |
+
# Flatten the nodes
|
601 |
+
all_nodes = [node for nodes in nodes_at_distance.values() for node in nodes]
|
602 |
+
|
603 |
+
# Extract the subgraph
|
604 |
+
subgraph = self.graph.subgraph(all_nodes)
|
605 |
+
|
606 |
+
# Build neighbor information
|
607 |
+
neighbors = []
|
608 |
+
for node in all_nodes:
|
609 |
+
if node == entity_id:
|
610 |
+
continue
|
611 |
+
|
612 |
+
node_data = self.graph.nodes[node]
|
613 |
+
|
614 |
+
# Determine the relations to central entity
|
615 |
+
relations = []
|
616 |
+
|
617 |
+
# Check direct relationships
|
618 |
+
# Check if central entity is source
|
619 |
+
edges_out = self.graph.get_edge_data(entity_id, node)
|
620 |
+
if edges_out:
|
621 |
+
for key, data in edges_out.items():
|
622 |
+
rel_type = data.get("type", "unknown")
|
623 |
+
|
624 |
+
# Skip structural relationships if not including classes
|
625 |
+
if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
|
626 |
+
continue
|
627 |
+
|
628 |
+
relations.append({
|
629 |
+
"type": rel_type,
|
630 |
+
"direction": "outgoing"
|
631 |
+
})
|
632 |
+
|
633 |
+
# Check if central entity is target
|
634 |
+
edges_in = self.graph.get_edge_data(node, entity_id)
|
635 |
+
if edges_in:
|
636 |
+
for key, data in edges_in.items():
|
637 |
+
rel_type = data.get("type", "unknown")
|
638 |
+
|
639 |
+
# Skip structural relationships if not including classes
|
640 |
+
if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
|
641 |
+
continue
|
642 |
+
|
643 |
+
relations.append({
|
644 |
+
"type": rel_type,
|
645 |
+
"direction": "incoming"
|
646 |
+
})
|
647 |
+
|
648 |
+
# Also find paths through intermediate nodes (indirect relationships)
|
649 |
+
if not relations: # Only look for indirect if no direct relationships
|
650 |
+
for path_length in range(2, max_distance + 1):
|
651 |
+
try:
|
652 |
+
# Find paths of exactly length path_length
|
653 |
+
paths = list(nx.all_simple_paths(
|
654 |
+
self.graph, entity_id, node, cutoff=path_length, min_edges=path_length
|
655 |
+
))
|
656 |
+
|
657 |
+
for path in paths:
|
658 |
+
if len(path) > 1: # Path should have at least 2 nodes
|
659 |
+
intermediate_nodes = path[1:-1] # Skip source and target
|
660 |
+
|
661 |
+
# Format the path as a relation
|
662 |
+
path_relation = {
|
663 |
+
"type": "indirect_connection",
|
664 |
+
"direction": "outgoing",
|
665 |
+
"path_length": len(path) - 1,
|
666 |
+
"intermediates": intermediate_nodes
|
667 |
+
}
|
668 |
+
|
669 |
+
relations.append(path_relation)
|
670 |
+
|
671 |
+
# Only need one example of an indirect path
|
672 |
+
break
|
673 |
+
except (nx.NetworkXNoPath, nx.NodeNotFound):
|
674 |
+
pass
|
675 |
+
|
676 |
+
# Only include neighbors with relations
|
677 |
+
if relations:
|
678 |
+
neighbors.append({
|
679 |
+
"id": node,
|
680 |
+
"type": node_data.get("type"),
|
681 |
+
"class_type": node_data.get("class_type"),
|
682 |
+
"properties": node_data.get("properties", {}),
|
683 |
+
"relations": relations,
|
684 |
+
"distance": next(dist for dist, nodes in nodes_at_distance.items() if node in nodes)
|
685 |
+
})
|
686 |
+
|
687 |
+
# Group neighbors by distance
|
688 |
+
neighbors_by_distance = defaultdict(list)
|
689 |
+
for neighbor in neighbors:
|
690 |
+
neighbors_by_distance[neighbor["distance"]].append(neighbor)
|
691 |
+
|
692 |
+
# Get central entity info
|
693 |
+
central_data = self.graph.nodes[entity_id]
|
694 |
+
|
695 |
+
return {
|
696 |
+
"central_entity": {
|
697 |
+
"id": entity_id,
|
698 |
+
"type": central_data.get("type"),
|
699 |
+
"class_type": central_data.get("class_type", ""),
|
700 |
+
"properties": central_data.get("properties", {})
|
701 |
+
},
|
702 |
+
"neighbors": neighbors,
|
703 |
+
"neighbors_by_distance": dict(neighbors_by_distance),
|
704 |
+
"total_neighbors": len(neighbors)
|
705 |
+
}
|
706 |
+
|
707 |
+
def find_common_patterns(self) -> List[Dict[str, Any]]:
|
708 |
+
"""
|
709 |
+
Find common patterns and structures in the knowledge graph.
|
710 |
+
|
711 |
+
Returns:
|
712 |
+
A list of pattern dictionaries
|
713 |
+
"""
|
714 |
+
if not self.graph:
|
715 |
+
return []
|
716 |
+
|
717 |
+
patterns = []
|
718 |
+
|
719 |
+
# Find common relationship patterns
|
720 |
+
relationship_patterns = self._find_relationship_patterns()
|
721 |
+
if relationship_patterns:
|
722 |
+
patterns.extend(relationship_patterns)
|
723 |
+
|
724 |
+
# Find hub entities (entities with many connections)
|
725 |
+
hub_entities = self._find_hub_entities()
|
726 |
+
if hub_entities:
|
727 |
+
patterns.append({
|
728 |
+
"type": "hub_entities",
|
729 |
+
"description": "Entities with high connectivity serving as knowledge hubs",
|
730 |
+
"entities": hub_entities
|
731 |
+
})
|
732 |
+
|
733 |
+
# Find common property patterns
|
734 |
+
property_patterns = self._find_property_patterns()
|
735 |
+
if property_patterns:
|
736 |
+
patterns.extend(property_patterns)
|
737 |
+
|
738 |
+
return patterns
|
739 |
+
|
740 |
+
def _find_relationship_patterns(self) -> List[Dict[str, Any]]:
|
741 |
+
"""Find common relationship patterns in the graph."""
|
742 |
+
# Count relationship triplets (source_type, relation, target_type)
|
743 |
+
triplet_counts = defaultdict(int)
|
744 |
+
|
745 |
+
for source, target, data in self.graph.edges(data=True):
|
746 |
+
rel_type = data.get("type", "unknown")
|
747 |
+
|
748 |
+
# Skip structural relationships
|
749 |
+
if rel_type in ["subClassOf", "instanceOf"]:
|
750 |
+
continue
|
751 |
+
|
752 |
+
# Get node types
|
753 |
+
source_data = self.graph.nodes[source]
|
754 |
+
target_data = self.graph.nodes[target]
|
755 |
+
|
756 |
+
source_type = (
|
757 |
+
source_data.get("class_type")
|
758 |
+
if source_data.get("type") == "instance"
|
759 |
+
else source_data.get("type")
|
760 |
+
)
|
761 |
+
|
762 |
+
target_type = (
|
763 |
+
target_data.get("class_type")
|
764 |
+
if target_data.get("type") == "instance"
|
765 |
+
else target_data.get("type")
|
766 |
+
)
|
767 |
+
|
768 |
+
if source_type and target_type:
|
769 |
+
triplet = (source_type, rel_type, target_type)
|
770 |
+
triplet_counts[triplet] += 1
|
771 |
+
|
772 |
+
# Get patterns with significant frequency (more than 1 occurrence)
|
773 |
+
patterns = []
|
774 |
+
for triplet, count in triplet_counts.items():
|
775 |
+
if count > 1:
|
776 |
+
source_type, rel_type, target_type = triplet
|
777 |
+
|
778 |
+
# Find examples of this pattern
|
779 |
+
examples = []
|
780 |
+
for source, target, data in self.graph.edges(data=True):
|
781 |
+
if len(examples) >= 3: # Limit to 3 examples
|
782 |
+
break
|
783 |
+
|
784 |
+
rel = data.get("type", "unknown")
|
785 |
+
if rel != rel_type:
|
786 |
+
continue
|
787 |
+
|
788 |
+
source_data = self.graph.nodes[source]
|
789 |
+
target_data = self.graph.nodes[target]
|
790 |
+
|
791 |
+
current_source_type = (
|
792 |
+
source_data.get("class_type")
|
793 |
+
if source_data.get("type") == "instance"
|
794 |
+
else source_data.get("type")
|
795 |
+
)
|
796 |
+
|
797 |
+
current_target_type = (
|
798 |
+
target_data.get("class_type")
|
799 |
+
if target_data.get("type") == "instance"
|
800 |
+
else target_data.get("type")
|
801 |
+
)
|
802 |
+
|
803 |
+
if current_source_type == source_type and current_target_type == target_type:
|
804 |
+
# Get readable names if available
|
805 |
+
source_name = source
|
806 |
+
if source_data.get("type") == "instance" and "properties" in source_data:
|
807 |
+
properties = source_data["properties"]
|
808 |
+
if "name" in properties:
|
809 |
+
source_name = properties["name"]
|
810 |
+
|
811 |
+
target_name = target
|
812 |
+
if target_data.get("type") == "instance" and "properties" in target_data:
|
813 |
+
properties = target_data["properties"]
|
814 |
+
if "name" in properties:
|
815 |
+
target_name = properties["name"]
|
816 |
+
|
817 |
+
examples.append({
|
818 |
+
"source": source,
|
819 |
+
"source_name": source_name,
|
820 |
+
"target": target,
|
821 |
+
"target_name": target_name,
|
822 |
+
"relationship": rel_type
|
823 |
+
})
|
824 |
+
|
825 |
+
patterns.append({
|
826 |
+
"type": "relationship_pattern",
|
827 |
+
"description": f"{source_type} {rel_type} {target_type}",
|
828 |
+
"source_type": source_type,
|
829 |
+
"relationship": rel_type,
|
830 |
+
"target_type": target_type,
|
831 |
+
"count": count,
|
832 |
+
"examples": examples
|
833 |
+
})
|
834 |
+
|
835 |
+
# Sort by frequency
|
836 |
+
patterns.sort(key=lambda x: x["count"], reverse=True)
|
837 |
+
|
838 |
+
return patterns
|
839 |
+
|
840 |
+
def _find_hub_entities(self) -> List[Dict[str, Any]]:
|
841 |
+
"""Find entities that serve as hubs (many connections)."""
|
842 |
+
# Calculate degree centrality
|
843 |
+
degree = nx.degree_centrality(self.graph)
|
844 |
+
|
845 |
+
# Get top entities by degree
|
846 |
+
top_entities = sorted(degree.items(), key=lambda x: x[1], reverse=True)[:10]
|
847 |
+
|
848 |
+
hub_entities = []
|
849 |
+
for node, centrality in top_entities:
|
850 |
+
node_data = self.graph.nodes[node]
|
851 |
+
node_type = node_data.get("type")
|
852 |
+
|
853 |
+
# Only consider instance nodes
|
854 |
+
if node_type == "instance":
|
855 |
+
# Get class type
|
856 |
+
class_type = node_data.get("class_type", "unknown")
|
857 |
+
|
858 |
+
# Get name if available
|
859 |
+
name = node
|
860 |
+
if "properties" in node_data and "name" in node_data["properties"]:
|
861 |
+
name = node_data["properties"]["name"]
|
862 |
+
|
863 |
+
# Count relationships by type
|
864 |
+
relationships = defaultdict(int)
|
865 |
+
for _, _, data in self.graph.edges(data=True, nbunch=[node]):
|
866 |
+
rel_type = data.get("type", "unknown")
|
867 |
+
if rel_type not in ["subClassOf", "instanceOf"]:
|
868 |
+
relationships[rel_type] += 1
|
869 |
+
|
870 |
+
hub_entities.append({
|
871 |
+
"id": node,
|
872 |
+
"name": name,
|
873 |
+
"type": class_type,
|
874 |
+
"centrality": centrality,
|
875 |
+
"relationships": dict(relationships),
|
876 |
+
"total_connections": sum(relationships.values())
|
877 |
+
})
|
878 |
+
|
879 |
+
# Sort by total connections
|
880 |
+
hub_entities.sort(key=lambda x: x["total_connections"], reverse=True)
|
881 |
+
|
882 |
+
return hub_entities
|
883 |
+
|
884 |
+
def _find_property_patterns(self) -> List[Dict[str, Any]]:
|
885 |
+
"""Find common property patterns in instance data."""
|
886 |
+
# Track properties by class type
|
887 |
+
properties_by_class = defaultdict(lambda: defaultdict(int))
|
888 |
+
|
889 |
+
for node, data in self.graph.nodes(data=True):
|
890 |
+
if data.get("type") == "instance":
|
891 |
+
class_type = data.get("class_type", "unknown")
|
892 |
+
|
893 |
+
if "properties" in data:
|
894 |
+
for prop in data["properties"].keys():
|
895 |
+
properties_by_class[class_type][prop] += 1
|
896 |
+
|
897 |
+
# Find common property combinations
|
898 |
+
patterns = []
|
899 |
+
for class_type, props in properties_by_class.items():
|
900 |
+
# Sort properties by frequency
|
901 |
+
sorted_props = sorted(props.items(), key=lambda x: x[1], reverse=True)
|
902 |
+
|
903 |
+
# Only include classes with multiple instances
|
904 |
+
class_instances = sum(1 for _, data in self.graph.nodes(data=True)
|
905 |
+
if data.get("type") == "instance" and data.get("class_type") == class_type)
|
906 |
+
|
907 |
+
if class_instances > 1:
|
908 |
+
common_props = [prop for prop, count in sorted_props if count > 1]
|
909 |
+
|
910 |
+
if common_props:
|
911 |
+
patterns.append({
|
912 |
+
"type": "property_pattern",
|
913 |
+
"description": f"Common properties for {class_type} instances",
|
914 |
+
"class_type": class_type,
|
915 |
+
"instance_count": class_instances,
|
916 |
+
"common_properties": common_props,
|
917 |
+
"property_frequencies": {prop: count for prop, count in sorted_props}
|
918 |
+
})
|
919 |
+
|
920 |
return patterns
|