|
import gradio as gr
|
|
import subprocess
|
|
import os
|
|
import sys
|
|
from .common_gui import (
|
|
get_saveasfilename_path,
|
|
get_file_path,
|
|
scriptdir,
|
|
list_files,
|
|
create_refresh_button, setup_environment
|
|
)
|
|
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
folder_symbol = "\U0001f4c2"
|
|
refresh_symbol = "\U0001f504"
|
|
save_style_symbol = "\U0001f4be"
|
|
document_symbol = "\U0001F4C4"
|
|
|
|
PYTHON = sys.executable
|
|
|
|
|
|
def resize_lora(
|
|
model,
|
|
new_rank,
|
|
save_to,
|
|
save_precision,
|
|
device,
|
|
dynamic_method,
|
|
dynamic_param,
|
|
verbose,
|
|
):
|
|
|
|
if model == "":
|
|
log.info("Invalid model file")
|
|
return
|
|
|
|
|
|
if not os.path.isfile(model):
|
|
log.info("The provided model is not a file")
|
|
return
|
|
|
|
if dynamic_method == "sv_ratio":
|
|
if float(dynamic_param) < 2:
|
|
log.info(
|
|
f"Dynamic parameter for {dynamic_method} need to be 2 or greater..."
|
|
)
|
|
return
|
|
|
|
if dynamic_method == "sv_fro" or dynamic_method == "sv_cumulative":
|
|
if float(dynamic_param) < 0 or float(dynamic_param) > 1:
|
|
log.info(
|
|
f"Dynamic parameter for {dynamic_method} need to be between 0 and 1..."
|
|
)
|
|
return
|
|
|
|
|
|
if not save_to.endswith((".pt", ".safetensors")):
|
|
save_to += ".safetensors"
|
|
|
|
if device == "":
|
|
device = "cuda"
|
|
|
|
run_cmd = [
|
|
rf"{PYTHON}",
|
|
rf"{scriptdir}/sd-scripts/networks/resize_lora.py",
|
|
"--save_precision",
|
|
save_precision,
|
|
"--save_to",
|
|
rf"{save_to}",
|
|
"--model",
|
|
rf"{model}",
|
|
"--new_rank",
|
|
str(new_rank),
|
|
"--device",
|
|
device,
|
|
]
|
|
|
|
|
|
if dynamic_method != "None":
|
|
run_cmd.append("--dynamic_method")
|
|
run_cmd.append(dynamic_method)
|
|
run_cmd.append("--dynamic_param")
|
|
run_cmd.append(str(dynamic_param))
|
|
|
|
|
|
if verbose:
|
|
run_cmd.append("--verbose")
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
command_to_run = " ".join(run_cmd)
|
|
log.info(f"Executing command: {command_to_run}")
|
|
|
|
|
|
subprocess.run(run_cmd, env=env)
|
|
|
|
log.info("Done resizing...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradio_resize_lora_tab(
|
|
headless=False,
|
|
):
|
|
current_model_dir = os.path.join(scriptdir, "outputs")
|
|
current_save_dir = os.path.join(scriptdir, "outputs")
|
|
|
|
def list_models(path):
|
|
nonlocal current_model_dir
|
|
current_model_dir = path
|
|
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
|
|
|
|
def list_save_to(path):
|
|
nonlocal current_save_dir
|
|
current_save_dir = path
|
|
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
|
|
|
|
with gr.Tab("Resize LoRA"):
|
|
gr.Markdown("This utility can resize a LoRA.")
|
|
|
|
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
|
|
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
|
|
|
|
with gr.Group(), gr.Row():
|
|
model = gr.Dropdown(
|
|
label="Source LoRA (path to the LoRA to resize)",
|
|
interactive=True,
|
|
choices=[""] + list_models(current_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
model,
|
|
lambda: None,
|
|
lambda: {"choices": list_models(current_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_lora_a_model_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_lora_a_model_file.click(
|
|
get_file_path,
|
|
inputs=[model, lora_ext, lora_ext_name],
|
|
outputs=model,
|
|
show_progress=False,
|
|
)
|
|
save_to = gr.Dropdown(
|
|
label="Save to (path for the LoRA file to save...)",
|
|
interactive=True,
|
|
choices=[""] + list_save_to(current_save_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
save_to,
|
|
lambda: None,
|
|
lambda: {"choices": list_save_to(current_save_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_save_to = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_save_to.click(
|
|
get_saveasfilename_path,
|
|
inputs=[save_to, lora_ext, lora_ext_name],
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
model.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_models(path)),
|
|
inputs=model,
|
|
outputs=model,
|
|
show_progress=False,
|
|
)
|
|
save_to.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
|
|
inputs=save_to,
|
|
outputs=save_to,
|
|
show_progress=False,
|
|
)
|
|
with gr.Row():
|
|
new_rank = gr.Slider(
|
|
label="Desired LoRA rank",
|
|
minimum=1,
|
|
maximum=1024,
|
|
step=1,
|
|
value=4,
|
|
interactive=True,
|
|
)
|
|
dynamic_method = gr.Radio(
|
|
choices=["None", "sv_ratio", "sv_fro", "sv_cumulative"],
|
|
value="sv_fro",
|
|
label="Dynamic method",
|
|
interactive=True,
|
|
)
|
|
dynamic_param = gr.Textbox(
|
|
label="Dynamic parameter",
|
|
value="0.9",
|
|
interactive=True,
|
|
placeholder="Value for the dynamic method selected.",
|
|
)
|
|
with gr.Row():
|
|
|
|
verbose = gr.Checkbox(label="Verbose logging", value=True)
|
|
save_precision = gr.Radio(
|
|
label="Save precision",
|
|
choices=["fp16", "bf16", "float"],
|
|
value="fp16",
|
|
interactive=True,
|
|
)
|
|
device = gr.Radio(
|
|
label="Device",
|
|
choices=[
|
|
"cpu",
|
|
"cuda",
|
|
],
|
|
value="cuda",
|
|
interactive=True,
|
|
)
|
|
|
|
convert_button = gr.Button("Resize model")
|
|
|
|
convert_button.click(
|
|
resize_lora,
|
|
inputs=[
|
|
model,
|
|
new_rank,
|
|
save_to,
|
|
save_precision,
|
|
device,
|
|
dynamic_method,
|
|
dynamic_param,
|
|
verbose,
|
|
],
|
|
show_progress=False,
|
|
)
|
|
|