File size: 7,546 Bytes
cff1674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import subprocess
import os
import sys
from .common_gui import (
get_saveasfilename_path,
get_file_path,
scriptdir,
list_files,
create_refresh_button, setup_environment
)
from .custom_logging import setup_logging
# Set up logging
log = setup_logging()
folder_symbol = "\U0001f4c2" # π
refresh_symbol = "\U0001f504" # π
save_style_symbol = "\U0001f4be" # πΎ
document_symbol = "\U0001F4C4" # π
PYTHON = sys.executable
def resize_lora(
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
):
# Check for caption_text_input
if model == "":
log.info("Invalid model file")
return
# Check if source model exist
if not os.path.isfile(model):
log.info("The provided model is not a file")
return
if dynamic_method == "sv_ratio":
if float(dynamic_param) < 2:
log.info(
f"Dynamic parameter for {dynamic_method} need to be 2 or greater..."
)
return
if dynamic_method == "sv_fro" or dynamic_method == "sv_cumulative":
if float(dynamic_param) < 0 or float(dynamic_param) > 1:
log.info(
f"Dynamic parameter for {dynamic_method} need to be between 0 and 1..."
)
return
# Check if save_to end with one of the defines extension. If not add .safetensors.
if not save_to.endswith((".pt", ".safetensors")):
save_to += ".safetensors"
if device == "":
device = "cuda"
run_cmd = [
rf"{PYTHON}",
rf"{scriptdir}/sd-scripts/networks/resize_lora.py",
"--save_precision",
save_precision,
"--save_to",
rf"{save_to}",
"--model",
rf"{model}",
"--new_rank",
str(new_rank),
"--device",
device,
]
# Conditional checks for dynamic parameters
if dynamic_method != "None":
run_cmd.append("--dynamic_method")
run_cmd.append(dynamic_method)
run_cmd.append("--dynamic_param")
run_cmd.append(str(dynamic_param))
# Check for verbosity
if verbose:
run_cmd.append("--verbose")
env = setup_environment()
# Reconstruct the safe command string for display
command_to_run = " ".join(run_cmd)
log.info(f"Executing command: {command_to_run}")
# Run the command in the sd-scripts folder context
subprocess.run(run_cmd, env=env)
log.info("Done resizing...")
###
# Gradio UI
###
def gradio_resize_lora_tab(
headless=False,
):
current_model_dir = os.path.join(scriptdir, "outputs")
current_save_dir = os.path.join(scriptdir, "outputs")
def list_models(path):
nonlocal current_model_dir
current_model_dir = path
return list(list_files(path, exts=[".ckpt", ".safetensors"], all=True))
def list_save_to(path):
nonlocal current_save_dir
current_save_dir = path
return list(list_files(path, exts=[".pt", ".safetensors"], all=True))
with gr.Tab("Resize LoRA"):
gr.Markdown("This utility can resize a LoRA.")
lora_ext = gr.Textbox(value="*.safetensors *.pt", visible=False)
lora_ext_name = gr.Textbox(value="LoRA model types", visible=False)
with gr.Group(), gr.Row():
model = gr.Dropdown(
label="Source LoRA (path to the LoRA to resize)",
interactive=True,
choices=[""] + list_models(current_model_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
model,
lambda: None,
lambda: {"choices": list_models(current_model_dir)},
"open_folder_small",
)
button_lora_a_model_file = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_lora_a_model_file.click(
get_file_path,
inputs=[model, lora_ext, lora_ext_name],
outputs=model,
show_progress=False,
)
save_to = gr.Dropdown(
label="Save to (path for the LoRA file to save...)",
interactive=True,
choices=[""] + list_save_to(current_save_dir),
value="",
allow_custom_value=True,
)
create_refresh_button(
save_to,
lambda: None,
lambda: {"choices": list_save_to(current_save_dir)},
"open_folder_small",
)
button_save_to = gr.Button(
folder_symbol,
elem_id="open_folder_small",
elem_classes=["tool"],
visible=(not headless),
)
button_save_to.click(
get_saveasfilename_path,
inputs=[save_to, lora_ext, lora_ext_name],
outputs=save_to,
show_progress=False,
)
model.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_models(path)),
inputs=model,
outputs=model,
show_progress=False,
)
save_to.change(
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
inputs=save_to,
outputs=save_to,
show_progress=False,
)
with gr.Row():
new_rank = gr.Slider(
label="Desired LoRA rank",
minimum=1,
maximum=1024,
step=1,
value=4,
interactive=True,
)
dynamic_method = gr.Radio(
choices=["None", "sv_ratio", "sv_fro", "sv_cumulative"],
value="sv_fro",
label="Dynamic method",
interactive=True,
)
dynamic_param = gr.Textbox(
label="Dynamic parameter",
value="0.9",
interactive=True,
placeholder="Value for the dynamic method selected.",
)
with gr.Row():
verbose = gr.Checkbox(label="Verbose logging", value=True)
save_precision = gr.Radio(
label="Save precision",
choices=["fp16", "bf16", "float"],
value="fp16",
interactive=True,
)
device = gr.Radio(
label="Device",
choices=[
"cpu",
"cuda",
],
value="cuda",
interactive=True,
)
convert_button = gr.Button("Resize model")
convert_button.click(
resize_lora,
inputs=[
model,
new_rank,
save_to,
save_precision,
device,
dynamic_method,
dynamic_param,
verbose,
],
show_progress=False,
)
|