|
import gradio as gr
|
|
import json
|
|
import math
|
|
import os
|
|
import time
|
|
import toml
|
|
|
|
from datetime import datetime
|
|
from .common_gui import (
|
|
check_if_model_exist,
|
|
color_aug_changed,
|
|
get_any_file_path,
|
|
get_executable_path,
|
|
get_file_path,
|
|
get_saveasfile_path,
|
|
output_message,
|
|
print_command_and_toml,
|
|
run_cmd_advanced_training,
|
|
SaveConfigFile,
|
|
scriptdir,
|
|
update_my_data,
|
|
validate_file_path, validate_folder_path, validate_model_path, validate_toml_file,
|
|
validate_args_setting, setup_environment,
|
|
)
|
|
from .class_accelerate_launch import AccelerateLaunch
|
|
from .class_configuration_file import ConfigurationFile
|
|
from .class_source_model import SourceModel
|
|
from .class_basic_training import BasicTraining
|
|
from .class_advanced_training import AdvancedTraining
|
|
from .class_sdxl_parameters import SDXLParameters
|
|
from .class_folders import Folders
|
|
from .class_command_executor import CommandExecutor
|
|
from .class_tensorboard import TensorboardManager
|
|
from .class_sample_images import SampleImages, create_prompt_file
|
|
from .class_lora_tab import LoRATools
|
|
from .class_huggingface import HuggingFace
|
|
from .class_metadata import MetaData
|
|
from .class_gui_config import KohyaSSGUIConfig
|
|
|
|
from .dreambooth_folder_creation_gui import (
|
|
gradio_dreambooth_folder_creation_tab,
|
|
)
|
|
from .dataset_balancing_gui import gradio_dataset_balancing_tab
|
|
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
|
|
executor = None
|
|
|
|
|
|
huggingface = None
|
|
use_shell = False
|
|
train_state_value = time.time()
|
|
|
|
document_symbol = "\U0001F4C4"
|
|
|
|
|
|
presets_dir = rf"{scriptdir}/presets"
|
|
|
|
LYCORIS_PRESETS_CHOICES = [
|
|
"attn-mlp",
|
|
"attn-only",
|
|
"full",
|
|
"full-lin",
|
|
"unet-transformer-only",
|
|
"unet-convblock-only",
|
|
]
|
|
|
|
|
|
def save_configuration(
|
|
save_as_bool,
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
fp8_base,
|
|
full_fp16,
|
|
|
|
stop_text_encoder_training,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
network_weights,
|
|
dim_from_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
masked_loss,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
gradient_accumulation_steps,
|
|
mem_eff_attn,
|
|
output_name,
|
|
model_list,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_train_steps,
|
|
max_data_loader_n_workers,
|
|
network_alpha,
|
|
training_comment,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
max_grad_norm,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
LoRA_type,
|
|
factor,
|
|
bypass_mode,
|
|
dora_wd,
|
|
use_cp,
|
|
use_tucker,
|
|
use_scalar,
|
|
rank_dropout_scale,
|
|
constrain,
|
|
rescaled,
|
|
train_norm,
|
|
decompose_both,
|
|
train_on_input,
|
|
conv_dim,
|
|
conv_alpha,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
down_lr_weight,
|
|
mid_lr_weight,
|
|
up_lr_weight,
|
|
block_lr_zero_threshold,
|
|
block_dims,
|
|
block_alphas,
|
|
conv_block_dims,
|
|
conv_block_alphas,
|
|
weighted_captions,
|
|
unit,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
scale_weight_norms,
|
|
network_dropout,
|
|
rank_dropout,
|
|
module_dropout,
|
|
sdxl_cache_text_encoder_outputs,
|
|
sdxl_no_half_vae,
|
|
full_bf16,
|
|
min_timestep,
|
|
max_timestep,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
LyCORIS_preset,
|
|
debiased_estimation_loss,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
|
|
original_file_path = file_path
|
|
|
|
|
|
if save_as_bool:
|
|
log.info("Save as...")
|
|
file_path = get_saveasfile_path(file_path)
|
|
|
|
else:
|
|
log.info("Save...")
|
|
|
|
if file_path == None or file_path == "":
|
|
file_path = get_saveasfile_path(file_path)
|
|
|
|
|
|
log.debug(file_path)
|
|
|
|
|
|
if file_path == None or file_path == "":
|
|
return original_file_path
|
|
|
|
|
|
destination_directory = os.path.dirname(file_path)
|
|
|
|
|
|
if not os.path.exists(destination_directory):
|
|
os.makedirs(destination_directory)
|
|
|
|
|
|
SaveConfigFile(
|
|
parameters=parameters,
|
|
file_path=file_path,
|
|
exclusion=["file_path", "save_as"],
|
|
)
|
|
|
|
|
|
return file_path
|
|
|
|
|
|
def open_configuration(
|
|
ask_for_file,
|
|
apply_preset,
|
|
file_path,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
fp8_base,
|
|
full_fp16,
|
|
|
|
stop_text_encoder_training,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
network_weights,
|
|
dim_from_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
masked_loss,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
gradient_accumulation_steps,
|
|
mem_eff_attn,
|
|
output_name,
|
|
model_list,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_train_steps,
|
|
max_data_loader_n_workers,
|
|
network_alpha,
|
|
training_comment,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
max_grad_norm,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
LoRA_type,
|
|
factor,
|
|
bypass_mode,
|
|
dora_wd,
|
|
use_cp,
|
|
use_tucker,
|
|
use_scalar,
|
|
rank_dropout_scale,
|
|
constrain,
|
|
rescaled,
|
|
train_norm,
|
|
decompose_both,
|
|
train_on_input,
|
|
conv_dim,
|
|
conv_alpha,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
down_lr_weight,
|
|
mid_lr_weight,
|
|
up_lr_weight,
|
|
block_lr_zero_threshold,
|
|
block_dims,
|
|
block_alphas,
|
|
conv_block_dims,
|
|
conv_block_alphas,
|
|
weighted_captions,
|
|
unit,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
scale_weight_norms,
|
|
network_dropout,
|
|
rank_dropout,
|
|
module_dropout,
|
|
sdxl_cache_text_encoder_outputs,
|
|
sdxl_no_half_vae,
|
|
full_bf16,
|
|
min_timestep,
|
|
max_timestep,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
LyCORIS_preset,
|
|
debiased_estimation_loss,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
training_preset,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
|
|
|
|
if apply_preset:
|
|
if training_preset != "none":
|
|
log.info(f"Applying preset {training_preset}...")
|
|
file_path = rf"{presets_dir}/lora/{training_preset}.json"
|
|
else:
|
|
|
|
|
|
training_preset_index = parameters.index(("training_preset", training_preset))
|
|
|
|
|
|
parameters[training_preset_index] = ("training_preset", "none")
|
|
|
|
|
|
original_file_path = file_path
|
|
|
|
|
|
if ask_for_file:
|
|
file_path = get_file_path(file_path)
|
|
|
|
|
|
if not file_path == "" and not file_path == None:
|
|
|
|
if not os.path.isfile(file_path):
|
|
log.error(f"Config file {file_path} does not exist.")
|
|
return
|
|
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
my_data = json.load(f)
|
|
log.info("Loading config...")
|
|
|
|
|
|
my_data = update_my_data(my_data)
|
|
else:
|
|
|
|
file_path = original_file_path
|
|
my_data = {}
|
|
|
|
values = [file_path]
|
|
|
|
for key, value in parameters:
|
|
if not key in ["ask_for_file", "apply_preset", "file_path"]:
|
|
json_value = my_data.get(key)
|
|
|
|
values.append(json_value if json_value is not None else value)
|
|
|
|
|
|
|
|
if my_data.get("LoRA_type", "Standard") in {
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/GLoRA",
|
|
}:
|
|
values.append(gr.Row(visible=True))
|
|
else:
|
|
values.append(gr.Row(visible=False))
|
|
|
|
return tuple(values)
|
|
|
|
|
|
def train_model(
|
|
headless,
|
|
print_only,
|
|
pretrained_model_name_or_path,
|
|
v2,
|
|
v_parameterization,
|
|
sdxl,
|
|
logging_dir,
|
|
train_data_dir,
|
|
reg_data_dir,
|
|
output_dir,
|
|
dataset_config,
|
|
max_resolution,
|
|
learning_rate,
|
|
lr_scheduler,
|
|
lr_warmup,
|
|
train_batch_size,
|
|
epoch,
|
|
save_every_n_epochs,
|
|
mixed_precision,
|
|
save_precision,
|
|
seed,
|
|
num_cpu_threads_per_process,
|
|
cache_latents,
|
|
cache_latents_to_disk,
|
|
caption_extension,
|
|
enable_bucket,
|
|
gradient_checkpointing,
|
|
fp8_base,
|
|
full_fp16,
|
|
|
|
stop_text_encoder_training_pct,
|
|
min_bucket_reso,
|
|
max_bucket_reso,
|
|
|
|
xformers,
|
|
save_model_as,
|
|
shuffle_caption,
|
|
save_state,
|
|
save_state_on_train_end,
|
|
resume,
|
|
prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
network_weights,
|
|
dim_from_weights,
|
|
color_aug,
|
|
flip_aug,
|
|
masked_loss,
|
|
clip_skip,
|
|
num_processes,
|
|
num_machines,
|
|
multi_gpu,
|
|
gpu_ids,
|
|
main_process_port,
|
|
gradient_accumulation_steps,
|
|
mem_eff_attn,
|
|
output_name,
|
|
model_list,
|
|
max_token_length,
|
|
max_train_epochs,
|
|
max_train_steps,
|
|
max_data_loader_n_workers,
|
|
network_alpha,
|
|
training_comment,
|
|
keep_tokens,
|
|
lr_scheduler_num_cycles,
|
|
lr_scheduler_power,
|
|
persistent_data_loader_workers,
|
|
bucket_no_upscale,
|
|
random_crop,
|
|
bucket_reso_steps,
|
|
v_pred_like_loss,
|
|
caption_dropout_every_n_epochs,
|
|
caption_dropout_rate,
|
|
optimizer,
|
|
optimizer_args,
|
|
lr_scheduler_args,
|
|
max_grad_norm,
|
|
noise_offset_type,
|
|
noise_offset,
|
|
noise_offset_random_strength,
|
|
adaptive_noise_scale,
|
|
multires_noise_iterations,
|
|
multires_noise_discount,
|
|
ip_noise_gamma,
|
|
ip_noise_gamma_random_strength,
|
|
LoRA_type,
|
|
factor,
|
|
bypass_mode,
|
|
dora_wd,
|
|
use_cp,
|
|
use_tucker,
|
|
use_scalar,
|
|
rank_dropout_scale,
|
|
constrain,
|
|
rescaled,
|
|
train_norm,
|
|
decompose_both,
|
|
train_on_input,
|
|
conv_dim,
|
|
conv_alpha,
|
|
sample_every_n_steps,
|
|
sample_every_n_epochs,
|
|
sample_sampler,
|
|
sample_prompts,
|
|
additional_parameters,
|
|
loss_type,
|
|
huber_schedule,
|
|
huber_c,
|
|
vae_batch_size,
|
|
min_snr_gamma,
|
|
down_lr_weight,
|
|
mid_lr_weight,
|
|
up_lr_weight,
|
|
block_lr_zero_threshold,
|
|
block_dims,
|
|
block_alphas,
|
|
conv_block_dims,
|
|
conv_block_alphas,
|
|
weighted_captions,
|
|
unit,
|
|
save_every_n_steps,
|
|
save_last_n_steps,
|
|
save_last_n_steps_state,
|
|
log_with,
|
|
wandb_api_key,
|
|
wandb_run_name,
|
|
log_tracker_name,
|
|
log_tracker_config,
|
|
scale_v_pred_loss_like_noise_pred,
|
|
scale_weight_norms,
|
|
network_dropout,
|
|
rank_dropout,
|
|
module_dropout,
|
|
sdxl_cache_text_encoder_outputs,
|
|
sdxl_no_half_vae,
|
|
full_bf16,
|
|
min_timestep,
|
|
max_timestep,
|
|
vae,
|
|
dynamo_backend,
|
|
dynamo_mode,
|
|
dynamo_use_fullgraph,
|
|
dynamo_use_dynamic,
|
|
extra_accelerate_launch_args,
|
|
LyCORIS_preset,
|
|
debiased_estimation_loss,
|
|
huggingface_repo_id,
|
|
huggingface_token,
|
|
huggingface_repo_type,
|
|
huggingface_repo_visibility,
|
|
huggingface_path_in_repo,
|
|
save_state_to_huggingface,
|
|
resume_from_huggingface,
|
|
async_upload,
|
|
metadata_author,
|
|
metadata_description,
|
|
metadata_license,
|
|
metadata_tags,
|
|
metadata_title,
|
|
):
|
|
|
|
parameters = list(locals().items())
|
|
global train_state_value
|
|
|
|
TRAIN_BUTTON_VISIBLE = [
|
|
gr.Button(visible=True),
|
|
gr.Button(visible=False or headless),
|
|
gr.Textbox(value=train_state_value),
|
|
]
|
|
|
|
if executor.is_running():
|
|
log.error("Training is already running. Can't start another training session.")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
log.info(f"Start training LoRA {LoRA_type} ...")
|
|
|
|
log.info(f"Validating lr scheduler arguments...")
|
|
if not validate_args_setting(lr_scheduler_args):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
log.info(f"Validating optimizer arguments...")
|
|
if not validate_args_setting(optimizer_args):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
|
|
|
|
|
|
if not validate_file_path(dataset_config):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_file_path(log_tracker_config):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(logging_dir, can_be_written_to=True, create_if_not_exists=True):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if LyCORIS_preset not in LYCORIS_PRESETS_CHOICES:
|
|
if not validate_toml_file(LyCORIS_preset):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_file_path(network_weights):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(output_dir, can_be_written_to=True, create_if_not_exists=True):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_model_path(pretrained_model_name_or_path):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(reg_data_dir):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(resume):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_folder_path(train_data_dir):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if not validate_model_path(vae):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if int(bucket_reso_steps) < 1:
|
|
output_message(
|
|
msg="Bucket resolution steps need to be greater than 0",
|
|
headless=headless,
|
|
)
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
|
|
|
|
if float(noise_offset) > 1 or float(noise_offset) < 0:
|
|
output_message(
|
|
msg="Noise offset need to be a value between 0 and 1",
|
|
headless=headless,
|
|
)
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
if output_dir != "":
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
|
|
if stop_text_encoder_training_pct > 0:
|
|
output_message(
|
|
msg='Output "stop text encoder training" is not yet supported. Ignoring',
|
|
headless=headless,
|
|
)
|
|
stop_text_encoder_training_pct = 0
|
|
|
|
if not print_only and check_if_model_exist(
|
|
output_name, output_dir, save_model_as, headless=headless
|
|
):
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if dataset_config:
|
|
log.info(
|
|
"Dataset config toml file used, skipping total_steps, train_batch_size, gradient_accumulation_steps, epoch, reg_factor, max_train_steps calculations..."
|
|
)
|
|
if max_train_steps > 0:
|
|
|
|
if stop_text_encoder_training_pct == 0:
|
|
stop_text_encoder_training = 0
|
|
else:
|
|
stop_text_encoder_training = math.ceil(
|
|
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
|
)
|
|
|
|
if lr_warmup != 0:
|
|
lr_warmup_steps = round(
|
|
float(int(lr_warmup) * int(max_train_steps) / 100)
|
|
)
|
|
else:
|
|
lr_warmup_steps = 0
|
|
else:
|
|
stop_text_encoder_training = 0
|
|
lr_warmup_steps = 0
|
|
|
|
if max_train_steps == 0:
|
|
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
|
|
else:
|
|
max_train_steps_info = f"Max train steps: {max_train_steps}"
|
|
|
|
else:
|
|
if train_data_dir == "":
|
|
log.error("Train data dir is empty")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
|
|
subfolders = [
|
|
f
|
|
for f in os.listdir(train_data_dir)
|
|
if os.path.isdir(os.path.join(train_data_dir, f))
|
|
]
|
|
|
|
total_steps = 0
|
|
|
|
|
|
for folder in subfolders:
|
|
try:
|
|
|
|
repeats = int(folder.split("_")[0])
|
|
log.info(f"Folder {folder}: {repeats} repeats found")
|
|
|
|
|
|
num_images = len(
|
|
[
|
|
f
|
|
for f, lower_f in (
|
|
(file, file.lower())
|
|
for file in os.listdir(os.path.join(train_data_dir, folder))
|
|
)
|
|
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
|
|
]
|
|
)
|
|
|
|
log.info(f"Folder {folder}: {num_images} images found")
|
|
|
|
|
|
steps = repeats * num_images
|
|
|
|
|
|
log.info(f"Folder {folder}: {num_images} * {repeats} = {steps} steps")
|
|
|
|
total_steps += steps
|
|
|
|
except ValueError:
|
|
|
|
log.info(
|
|
f"Error: '{folder}' does not contain an underscore, skipping..."
|
|
)
|
|
|
|
if reg_data_dir == "":
|
|
reg_factor = 1
|
|
else:
|
|
log.warning(
|
|
"Regularisation images are used... Will double the number of steps required..."
|
|
)
|
|
reg_factor = 2
|
|
|
|
log.info(f"Regulatization factor: {reg_factor}")
|
|
|
|
if max_train_steps == 0:
|
|
|
|
max_train_steps = int(
|
|
math.ceil(
|
|
float(total_steps)
|
|
/ int(train_batch_size)
|
|
/ int(gradient_accumulation_steps)
|
|
* int(epoch)
|
|
* int(reg_factor)
|
|
)
|
|
)
|
|
max_train_steps_info = f"max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}"
|
|
else:
|
|
if max_train_steps == 0:
|
|
max_train_steps_info = f"Max train steps: 0. sd-scripts will therefore default to 1600. Please specify a different value if required."
|
|
else:
|
|
max_train_steps_info = f"Max train steps: {max_train_steps}"
|
|
|
|
|
|
if stop_text_encoder_training_pct == 0:
|
|
stop_text_encoder_training = 0
|
|
else:
|
|
stop_text_encoder_training = math.ceil(
|
|
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
|
|
)
|
|
|
|
if lr_warmup != 0:
|
|
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
|
|
else:
|
|
lr_warmup_steps = 0
|
|
|
|
log.info(f"Total steps: {total_steps}")
|
|
|
|
log.info(f"Train batch size: {train_batch_size}")
|
|
log.info(f"Gradient accumulation steps: {gradient_accumulation_steps}")
|
|
log.info(f"Epoch: {epoch}")
|
|
log.info(max_train_steps_info)
|
|
log.info(f"stop_text_encoder_training = {stop_text_encoder_training}")
|
|
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
|
|
|
|
accelerate_path = get_executable_path("accelerate")
|
|
if accelerate_path == "":
|
|
log.error("accelerate not found")
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
run_cmd = [rf'{accelerate_path}', "launch"]
|
|
|
|
run_cmd = AccelerateLaunch.run_cmd(
|
|
run_cmd=run_cmd,
|
|
dynamo_backend=dynamo_backend,
|
|
dynamo_mode=dynamo_mode,
|
|
dynamo_use_fullgraph=dynamo_use_fullgraph,
|
|
dynamo_use_dynamic=dynamo_use_dynamic,
|
|
num_processes=num_processes,
|
|
num_machines=num_machines,
|
|
multi_gpu=multi_gpu,
|
|
gpu_ids=gpu_ids,
|
|
main_process_port=main_process_port,
|
|
num_cpu_threads_per_process=num_cpu_threads_per_process,
|
|
mixed_precision=mixed_precision,
|
|
extra_accelerate_launch_args=extra_accelerate_launch_args,
|
|
)
|
|
|
|
if sdxl:
|
|
run_cmd.append(rf"{scriptdir}/sd-scripts/sdxl_train_network.py")
|
|
else:
|
|
run_cmd.append(rf"{scriptdir}/sd-scripts/train_network.py")
|
|
|
|
network_args = ""
|
|
|
|
if LoRA_type == "LyCORIS/BOFT":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} module_dropout={module_dropout} use_tucker={use_tucker} use_scalar={use_scalar} rank_dropout={rank_dropout} rank_dropout_scale={rank_dropout_scale} constrain={constrain} rescaled={rescaled} algo=boft train_norm={train_norm}"
|
|
|
|
if LoRA_type == "LyCORIS/Diag-OFT":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} module_dropout={module_dropout} use_tucker={use_tucker} use_scalar={use_scalar} rank_dropout={rank_dropout} rank_dropout_scale={rank_dropout_scale} constrain={constrain} rescaled={rescaled} algo=diag-oft train_norm={train_norm}"
|
|
|
|
if LoRA_type == "LyCORIS/DyLoRA":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f' preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} use_tucker={use_tucker} block_size={unit} rank_dropout={rank_dropout} module_dropout={module_dropout} algo="dylora" train_norm={train_norm}'
|
|
|
|
if LoRA_type == "LyCORIS/GLoRA":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f' preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} rank_dropout={rank_dropout} module_dropout={module_dropout} rank_dropout_scale={rank_dropout_scale} algo="glora" train_norm={train_norm}'
|
|
|
|
if LoRA_type == "LyCORIS/iA3":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} train_on_input={train_on_input} algo=ia3"
|
|
|
|
if LoRA_type == "LoCon" or LoRA_type == "LyCORIS/LoCon":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} rank_dropout={rank_dropout} bypass_mode={bypass_mode} dora_wd={dora_wd} module_dropout={module_dropout} use_tucker={use_tucker} use_scalar={use_scalar} rank_dropout_scale={rank_dropout_scale} algo=locon train_norm={train_norm}"
|
|
|
|
if LoRA_type == "LyCORIS/LoHa":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f' preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} rank_dropout={rank_dropout} bypass_mode={bypass_mode} dora_wd={dora_wd} module_dropout={module_dropout} use_tucker={use_tucker} use_scalar={use_scalar} rank_dropout_scale={rank_dropout_scale} algo="loha" train_norm={train_norm}'
|
|
|
|
if LoRA_type == "LyCORIS/LoKr":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} conv_dim={conv_dim} conv_alpha={conv_alpha} rank_dropout={rank_dropout} bypass_mode={bypass_mode} dora_wd={dora_wd} module_dropout={module_dropout} factor={factor} use_cp={use_cp} use_scalar={use_scalar} decompose_both={decompose_both} rank_dropout_scale={rank_dropout_scale} algo=lokr train_norm={train_norm}"
|
|
|
|
if LoRA_type == "LyCORIS/Native Fine-Tuning":
|
|
network_module = "lycoris.kohya"
|
|
network_args = f" preset={LyCORIS_preset} rank_dropout={rank_dropout} module_dropout={module_dropout} use_tucker={use_tucker} use_scalar={use_scalar} rank_dropout_scale={rank_dropout_scale} algo=full train_norm={train_norm}"
|
|
|
|
if LoRA_type in ["Kohya LoCon", "Standard"]:
|
|
kohya_lora_var_list = [
|
|
"down_lr_weight",
|
|
"mid_lr_weight",
|
|
"up_lr_weight",
|
|
"block_lr_zero_threshold",
|
|
"block_dims",
|
|
"block_alphas",
|
|
"conv_block_dims",
|
|
"conv_block_alphas",
|
|
"rank_dropout",
|
|
"module_dropout",
|
|
]
|
|
network_module = "networks.lora"
|
|
kohya_lora_vars = {
|
|
key: value
|
|
for key, value in vars().items()
|
|
if key in kohya_lora_var_list and value
|
|
}
|
|
if LoRA_type == "Kohya LoCon":
|
|
network_args += f' conv_dim="{conv_dim}" conv_alpha="{conv_alpha}"'
|
|
|
|
for key, value in kohya_lora_vars.items():
|
|
if value:
|
|
network_args += f" {key}={value}"
|
|
|
|
if LoRA_type in ["LoRA-FA"]:
|
|
kohya_lora_var_list = [
|
|
"down_lr_weight",
|
|
"mid_lr_weight",
|
|
"up_lr_weight",
|
|
"block_lr_zero_threshold",
|
|
"block_dims",
|
|
"block_alphas",
|
|
"conv_block_dims",
|
|
"conv_block_alphas",
|
|
"rank_dropout",
|
|
"module_dropout",
|
|
]
|
|
|
|
network_module = "networks.lora_fa"
|
|
kohya_lora_vars = {
|
|
key: value
|
|
for key, value in vars().items()
|
|
if key in kohya_lora_var_list and value
|
|
}
|
|
|
|
network_args = ""
|
|
if LoRA_type == "Kohya LoCon":
|
|
network_args += f' conv_dim="{conv_dim}" conv_alpha="{conv_alpha}"'
|
|
|
|
for key, value in kohya_lora_vars.items():
|
|
if value:
|
|
network_args += f" {key}={value}"
|
|
|
|
if LoRA_type in ["Kohya DyLoRA"]:
|
|
kohya_lora_var_list = [
|
|
"conv_dim",
|
|
"conv_alpha",
|
|
"down_lr_weight",
|
|
"mid_lr_weight",
|
|
"up_lr_weight",
|
|
"block_lr_zero_threshold",
|
|
"block_dims",
|
|
"block_alphas",
|
|
"conv_block_dims",
|
|
"conv_block_alphas",
|
|
"rank_dropout",
|
|
"module_dropout",
|
|
"unit",
|
|
]
|
|
|
|
network_module = "networks.dylora"
|
|
kohya_lora_vars = {
|
|
key: value
|
|
for key, value in vars().items()
|
|
if key in kohya_lora_var_list and value
|
|
}
|
|
|
|
network_args = ""
|
|
|
|
for key, value in kohya_lora_vars.items():
|
|
if value:
|
|
network_args += f" {key}={value}"
|
|
|
|
|
|
learning_rate = float(learning_rate) if learning_rate is not None else 0.0
|
|
text_encoder_lr_float = (
|
|
float(text_encoder_lr) if text_encoder_lr is not None else 0.0
|
|
)
|
|
unet_lr_float = float(unet_lr) if unet_lr is not None else 0.0
|
|
|
|
|
|
|
|
if float(learning_rate) == unet_lr_float == text_encoder_lr_float == 0:
|
|
output_message(msg="Please input learning rate values.", headless=headless)
|
|
return TRAIN_BUTTON_VISIBLE
|
|
|
|
network_train_text_encoder_only = text_encoder_lr_float != 0 and unet_lr_float == 0
|
|
|
|
network_train_unet_only = text_encoder_lr_float == 0 and unet_lr_float != 0
|
|
|
|
config_toml_data = {
|
|
"adaptive_noise_scale": (
|
|
adaptive_noise_scale if adaptive_noise_scale != 0 else None
|
|
),
|
|
"async_upload": async_upload,
|
|
"bucket_no_upscale": bucket_no_upscale,
|
|
"bucket_reso_steps": bucket_reso_steps,
|
|
"cache_latents": cache_latents,
|
|
"cache_latents_to_disk": cache_latents_to_disk,
|
|
"cache_text_encoder_outputs": (
|
|
True if sdxl and sdxl_cache_text_encoder_outputs else None
|
|
),
|
|
"caption_dropout_every_n_epochs": int(caption_dropout_every_n_epochs),
|
|
"caption_dropout_rate": caption_dropout_rate,
|
|
"caption_extension": caption_extension,
|
|
"clip_skip": clip_skip if clip_skip != 0 else None,
|
|
"color_aug": color_aug,
|
|
"dataset_config": dataset_config,
|
|
"debiased_estimation_loss": debiased_estimation_loss,
|
|
"dynamo_backend": dynamo_backend,
|
|
"dim_from_weights": dim_from_weights,
|
|
"enable_bucket": enable_bucket,
|
|
"epoch": int(epoch),
|
|
"flip_aug": flip_aug,
|
|
"fp8_base": fp8_base,
|
|
"full_bf16": full_bf16,
|
|
"full_fp16": full_fp16,
|
|
"gradient_accumulation_steps": int(gradient_accumulation_steps),
|
|
"gradient_checkpointing": gradient_checkpointing,
|
|
"huber_c": huber_c,
|
|
"huber_schedule": huber_schedule,
|
|
"huggingface_repo_id": huggingface_repo_id,
|
|
"huggingface_token": huggingface_token,
|
|
"huggingface_repo_type": huggingface_repo_type,
|
|
"huggingface_repo_visibility": huggingface_repo_visibility,
|
|
"huggingface_path_in_repo": huggingface_path_in_repo,
|
|
"ip_noise_gamma": ip_noise_gamma if ip_noise_gamma != 0 else None,
|
|
"ip_noise_gamma_random_strength": ip_noise_gamma_random_strength,
|
|
"keep_tokens": int(keep_tokens),
|
|
"learning_rate": learning_rate,
|
|
"logging_dir": logging_dir,
|
|
"log_tracker_name": log_tracker_name,
|
|
"log_tracker_config": log_tracker_config,
|
|
"loss_type": loss_type,
|
|
"lr_scheduler": lr_scheduler,
|
|
"lr_scheduler_args": str(lr_scheduler_args).replace('"', "").split(),
|
|
"lr_scheduler_num_cycles": (
|
|
int(lr_scheduler_num_cycles)
|
|
if lr_scheduler_num_cycles != ""
|
|
else int(epoch)
|
|
),
|
|
"lr_scheduler_power": lr_scheduler_power,
|
|
"lr_warmup_steps": lr_warmup_steps,
|
|
"masked_loss": masked_loss,
|
|
"max_bucket_reso": max_bucket_reso,
|
|
"max_grad_norm": max_grad_norm,
|
|
"max_timestep": max_timestep if max_timestep != 0 else None,
|
|
"max_token_length": int(max_token_length),
|
|
"max_train_epochs": (
|
|
int(max_train_epochs) if int(max_train_epochs) != 0 else None
|
|
),
|
|
"max_train_steps": int(max_train_steps) if int(max_train_steps) != 0 else None,
|
|
"mem_eff_attn": mem_eff_attn,
|
|
"metadata_author": metadata_author,
|
|
"metadata_description": metadata_description,
|
|
"metadata_license": metadata_license,
|
|
"metadata_tags": metadata_tags,
|
|
"metadata_title": metadata_title,
|
|
"min_bucket_reso": int(min_bucket_reso),
|
|
"min_snr_gamma": min_snr_gamma if min_snr_gamma != 0 else None,
|
|
"min_timestep": min_timestep if min_timestep != 0 else None,
|
|
"mixed_precision": mixed_precision,
|
|
"multires_noise_discount": multires_noise_discount,
|
|
"multires_noise_iterations": (
|
|
multires_noise_iterations if multires_noise_iterations != 0 else None
|
|
),
|
|
"network_alpha": network_alpha,
|
|
"network_args": str(network_args).replace('"', "").split(),
|
|
"network_dim": network_dim,
|
|
"network_dropout": network_dropout,
|
|
"network_module": network_module,
|
|
"network_train_unet_only": network_train_unet_only,
|
|
"network_train_text_encoder_only": network_train_text_encoder_only,
|
|
"network_weights": network_weights,
|
|
"no_half_vae": True if sdxl and sdxl_no_half_vae else None,
|
|
"noise_offset": noise_offset if noise_offset != 0 else None,
|
|
"noise_offset_random_strength": noise_offset_random_strength,
|
|
"noise_offset_type": noise_offset_type,
|
|
"optimizer_type": optimizer,
|
|
"optimizer_args": str(optimizer_args).replace('"', "").split(),
|
|
"output_dir": output_dir,
|
|
"output_name": output_name,
|
|
"persistent_data_loader_workers": int(persistent_data_loader_workers),
|
|
"pretrained_model_name_or_path": pretrained_model_name_or_path,
|
|
"prior_loss_weight": prior_loss_weight,
|
|
"random_crop": random_crop,
|
|
"reg_data_dir": reg_data_dir,
|
|
"resolution": max_resolution,
|
|
"resume": resume,
|
|
"resume_from_huggingface": resume_from_huggingface,
|
|
"sample_every_n_epochs": (
|
|
sample_every_n_epochs if sample_every_n_epochs != 0 else None
|
|
),
|
|
"sample_every_n_steps": (
|
|
sample_every_n_steps if sample_every_n_steps != 0 else None
|
|
),
|
|
"sample_prompts": create_prompt_file(sample_prompts, output_dir),
|
|
"sample_sampler": sample_sampler,
|
|
"save_every_n_epochs": (
|
|
save_every_n_epochs if save_every_n_epochs != 0 else None
|
|
),
|
|
"save_every_n_steps": save_every_n_steps if save_every_n_steps != 0 else None,
|
|
"save_last_n_steps": save_last_n_steps if save_last_n_steps != 0 else None,
|
|
"save_last_n_steps_state": (
|
|
save_last_n_steps_state if save_last_n_steps_state != 0 else None
|
|
),
|
|
"save_model_as": save_model_as,
|
|
"save_precision": save_precision,
|
|
"save_state": save_state,
|
|
"save_state_on_train_end": save_state_on_train_end,
|
|
"save_state_to_huggingface": save_state_to_huggingface,
|
|
"scale_v_pred_loss_like_noise_pred": scale_v_pred_loss_like_noise_pred,
|
|
"scale_weight_norms": scale_weight_norms,
|
|
"sdpa": True if xformers == "sdpa" else None,
|
|
"seed": int(seed) if int(seed) != 0 else None,
|
|
"shuffle_caption": shuffle_caption,
|
|
"stop_text_encoder_training": (
|
|
stop_text_encoder_training if stop_text_encoder_training != 0 else None
|
|
),
|
|
"text_encoder_lr": text_encoder_lr if not 0 else None,
|
|
"train_batch_size": train_batch_size,
|
|
"train_data_dir": train_data_dir,
|
|
"training_comment": training_comment,
|
|
"unet_lr": unet_lr if not 0 else None,
|
|
"log_with": log_with,
|
|
"v2": v2,
|
|
"v_parameterization": v_parameterization,
|
|
"v_pred_like_loss": v_pred_like_loss if v_pred_like_loss != 0 else None,
|
|
"vae": vae,
|
|
"vae_batch_size": vae_batch_size if vae_batch_size != 0 else None,
|
|
"wandb_api_key": wandb_api_key,
|
|
"wandb_run_name": wandb_run_name,
|
|
"weighted_captions": weighted_captions,
|
|
"xformers": True if xformers == "xformers" else None,
|
|
}
|
|
|
|
|
|
|
|
config_toml_data = {
|
|
key: value
|
|
for key, value in config_toml_data.items()
|
|
if value not in ["", False, None]
|
|
}
|
|
|
|
config_toml_data["max_data_loader_n_workers"] = int(max_data_loader_n_workers)
|
|
|
|
|
|
config_toml_data = dict(sorted(config_toml_data.items()))
|
|
|
|
current_datetime = datetime.now()
|
|
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
|
|
tmpfilename = fr"{output_dir}/config_lora-{formatted_datetime}.toml"
|
|
|
|
|
|
with open(tmpfilename, "w", encoding="utf-8") as toml_file:
|
|
toml.dump(config_toml_data, toml_file)
|
|
|
|
if not os.path.exists(toml_file.name):
|
|
log.error(f"Failed to write TOML file: {toml_file.name}")
|
|
|
|
run_cmd.append("--config_file")
|
|
run_cmd.append(rf"{tmpfilename}")
|
|
|
|
|
|
run_cmd_params = {
|
|
"additional_parameters": additional_parameters,
|
|
}
|
|
|
|
|
|
run_cmd = run_cmd_advanced_training(run_cmd=run_cmd, **run_cmd_params)
|
|
|
|
if print_only:
|
|
print_command_and_toml(run_cmd, tmpfilename)
|
|
else:
|
|
|
|
current_datetime = datetime.now()
|
|
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
|
|
|
|
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json")
|
|
|
|
log.info(f"Saving training config to {file_path}...")
|
|
|
|
SaveConfigFile(
|
|
parameters=parameters,
|
|
file_path=file_path,
|
|
exclusion=["file_path", "save_as", "headless", "print_only"],
|
|
)
|
|
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
|
|
executor.execute_command(run_cmd=run_cmd, env=env)
|
|
|
|
train_state_value = time.time()
|
|
|
|
return (
|
|
gr.Button(visible=False or headless),
|
|
gr.Button(visible=True),
|
|
gr.Textbox(value=train_state_value),
|
|
)
|
|
|
|
|
|
def lora_tab(
|
|
train_data_dir_input=gr.Dropdown(),
|
|
reg_data_dir_input=gr.Dropdown(),
|
|
output_dir_input=gr.Dropdown(),
|
|
logging_dir_input=gr.Dropdown(),
|
|
headless=False,
|
|
config: KohyaSSGUIConfig = {},
|
|
use_shell_flag: bool = False,
|
|
):
|
|
dummy_db_true = gr.Checkbox(value=True, visible=False)
|
|
dummy_db_false = gr.Checkbox(value=False, visible=False)
|
|
dummy_headless = gr.Checkbox(value=headless, visible=False)
|
|
|
|
global use_shell
|
|
use_shell = use_shell_flag
|
|
|
|
with gr.Tab("Training"), gr.Column(variant="compact") as tab:
|
|
gr.Markdown(
|
|
"Train a custom model using kohya train network LoRA python code..."
|
|
)
|
|
|
|
|
|
with gr.Accordion("Configuration", open=False):
|
|
configuration = ConfigurationFile(headless=headless, config=config)
|
|
|
|
with gr.Accordion("Accelerate launch", open=False), gr.Column():
|
|
accelerate_launch = AccelerateLaunch(config=config)
|
|
|
|
with gr.Column():
|
|
source_model = SourceModel(
|
|
save_model_as_choices=[
|
|
"ckpt",
|
|
"safetensors",
|
|
],
|
|
headless=headless,
|
|
config=config,
|
|
)
|
|
|
|
with gr.Accordion("Metadata", open=False), gr.Group():
|
|
metadata = MetaData(config=config)
|
|
|
|
with gr.Accordion("Folders", open=False), gr.Group():
|
|
folders = Folders(headless=headless, config=config)
|
|
|
|
with gr.Accordion("Dataset Preparation", open=False):
|
|
gr.Markdown(
|
|
"This section provide Dreambooth tools to help setup your dataset..."
|
|
)
|
|
gradio_dreambooth_folder_creation_tab(
|
|
train_data_dir_input=source_model.train_data_dir,
|
|
reg_data_dir_input=folders.reg_data_dir,
|
|
output_dir_input=folders.output_dir,
|
|
logging_dir_input=folders.logging_dir,
|
|
headless=headless,
|
|
config=config,
|
|
)
|
|
|
|
gradio_dataset_balancing_tab(headless=headless)
|
|
|
|
with gr.Accordion("Parameters", open=False), gr.Column():
|
|
|
|
def list_presets(path):
|
|
json_files = []
|
|
|
|
|
|
|
|
|
|
for file in os.listdir(path):
|
|
if file.endswith(".json"):
|
|
json_files.append(os.path.splitext(file)[0])
|
|
|
|
user_presets_path = os.path.join(path, "user_presets")
|
|
if os.path.isdir(user_presets_path):
|
|
for file in os.listdir(user_presets_path):
|
|
if file.endswith(".json"):
|
|
preset_name = os.path.splitext(file)[0]
|
|
json_files.append(os.path.join("user_presets", preset_name))
|
|
|
|
return json_files
|
|
|
|
training_preset = gr.Dropdown(
|
|
label="Presets",
|
|
choices=["none"] + list_presets(rf"{presets_dir}/lora"),
|
|
|
|
value="none",
|
|
)
|
|
|
|
with gr.Accordion("Basic", open="True"):
|
|
with gr.Group(elem_id="basic_tab"):
|
|
with gr.Row():
|
|
LoRA_type = gr.Dropdown(
|
|
label="LoRA type",
|
|
choices=[
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/iA3",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
"Standard",
|
|
],
|
|
value="Standard",
|
|
)
|
|
LyCORIS_preset = gr.Dropdown(
|
|
label="LyCORIS Preset",
|
|
choices=LYCORIS_PRESETS_CHOICES,
|
|
value="full",
|
|
visible=False,
|
|
interactive=True,
|
|
allow_custom_value=True,
|
|
|
|
)
|
|
with gr.Group():
|
|
with gr.Row():
|
|
network_weights = gr.Textbox(
|
|
label="Network weights",
|
|
placeholder="(Optional)",
|
|
info="Path to an existing LoRA network weights to resume training from",
|
|
)
|
|
network_weights_file = gr.Button(
|
|
document_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
network_weights_file.click(
|
|
get_any_file_path,
|
|
inputs=[network_weights],
|
|
outputs=network_weights,
|
|
show_progress=False,
|
|
)
|
|
dim_from_weights = gr.Checkbox(
|
|
label="DIM from weights",
|
|
value=False,
|
|
info="Automatically determine the dim(rank) from the weight file.",
|
|
)
|
|
basic_training = BasicTraining(
|
|
learning_rate_value=0.0001,
|
|
lr_scheduler_value="cosine",
|
|
lr_warmup_value=10,
|
|
sdxl_checkbox=source_model.sdxl_checkbox,
|
|
config=config,
|
|
)
|
|
|
|
with gr.Row():
|
|
text_encoder_lr = gr.Number(
|
|
label="Text Encoder learning rate",
|
|
value=0.0001,
|
|
info="(Optional)",
|
|
minimum=0,
|
|
maximum=1,
|
|
)
|
|
|
|
unet_lr = gr.Number(
|
|
label="Unet learning rate",
|
|
value=0.0001,
|
|
info="(Optional)",
|
|
minimum=0,
|
|
maximum=1,
|
|
)
|
|
|
|
|
|
sdxl_params = SDXLParameters(
|
|
source_model.sdxl_checkbox, config=config
|
|
)
|
|
|
|
|
|
with gr.Accordion("LyCORIS", visible=False) as lycoris_accordion:
|
|
with gr.Row():
|
|
factor = gr.Slider(
|
|
label="LoKr factor",
|
|
value=-1,
|
|
minimum=-1,
|
|
maximum=64,
|
|
step=1,
|
|
visible=False,
|
|
)
|
|
bypass_mode = gr.Checkbox(
|
|
value=False,
|
|
label="Bypass mode",
|
|
info="Designed for bnb 8bit/4bit linear layer. (QLyCORIS)",
|
|
visible=False,
|
|
)
|
|
dora_wd = gr.Checkbox(
|
|
value=False,
|
|
label="DoRA Weight Decompose",
|
|
info="Enable the DoRA method for these algorithms",
|
|
visible=False,
|
|
)
|
|
use_cp = gr.Checkbox(
|
|
value=False,
|
|
label="Use CP decomposition",
|
|
info="A two-step approach utilizing tensor decomposition and fine-tuning to accelerate convolution layers in large neural networks, resulting in significant CPU speedups with minor accuracy drops.",
|
|
visible=False,
|
|
)
|
|
use_tucker = gr.Checkbox(
|
|
value=False,
|
|
label="Use Tucker decomposition",
|
|
info="Efficiently decompose tensor shapes, resulting in a sequence of convolution layers with varying dimensions and Hadamard product implementation through multiplication of two distinct tensors.",
|
|
visible=False,
|
|
)
|
|
use_scalar = gr.Checkbox(
|
|
value=False,
|
|
label="Use Scalar",
|
|
info="Train an additional scalar in front of the weight difference, use a different weight initialization strategy.",
|
|
visible=False,
|
|
)
|
|
with gr.Row():
|
|
rank_dropout_scale = gr.Checkbox(
|
|
value=False,
|
|
label="Rank Dropout Scale",
|
|
info="Adjusts the scale of the rank dropout to maintain the average dropout rate, ensuring more consistent regularization across different layers.",
|
|
visible=False,
|
|
)
|
|
constrain = gr.Number(
|
|
value=0.0,
|
|
label="Constrain OFT",
|
|
info="Limits the norm of the oft_blocks, ensuring that their magnitude does not exceed a specified threshold, thus controlling the extent of the transformation applied.",
|
|
visible=False,
|
|
)
|
|
rescaled = gr.Checkbox(
|
|
value=False,
|
|
label="Rescaled OFT",
|
|
info="applies an additional scaling factor to the oft_blocks, allowing for further adjustment of their impact on the model's transformations.",
|
|
visible=False,
|
|
)
|
|
train_norm = gr.Checkbox(
|
|
value=False,
|
|
label="Train Norm",
|
|
info="Selects trainable layers in a network, but trains normalization layers identically across methods as they lack matrix decomposition.",
|
|
visible=False,
|
|
)
|
|
decompose_both = gr.Checkbox(
|
|
value=False,
|
|
label="LoKr decompose both",
|
|
info="Controls whether both input and output dimensions of the layer's weights are decomposed into smaller matrices for reparameterization.",
|
|
visible=False,
|
|
)
|
|
train_on_input = gr.Checkbox(
|
|
value=True,
|
|
label="iA3 train on input",
|
|
info="Set if we change the information going into the system (True) or the information coming out of it (False).",
|
|
visible=False,
|
|
)
|
|
with gr.Row() as network_row:
|
|
network_dim = gr.Slider(
|
|
minimum=1,
|
|
maximum=512,
|
|
label="Network Rank (Dimension)",
|
|
value=8,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
network_alpha = gr.Slider(
|
|
minimum=0.00001,
|
|
maximum=1024,
|
|
label="Network Alpha",
|
|
value=1,
|
|
step=0.00001,
|
|
interactive=True,
|
|
info="alpha for LoRA weight scaling",
|
|
)
|
|
with gr.Row(visible=False) as convolution_row:
|
|
|
|
conv_dim = gr.Slider(
|
|
minimum=0,
|
|
maximum=512,
|
|
value=1,
|
|
step=1,
|
|
label="Convolution Rank (Dimension)",
|
|
)
|
|
conv_alpha = gr.Slider(
|
|
minimum=0,
|
|
maximum=512,
|
|
value=1,
|
|
step=1,
|
|
label="Convolution Alpha",
|
|
)
|
|
with gr.Row():
|
|
scale_weight_norms = gr.Slider(
|
|
label="Scale weight norms",
|
|
value=0,
|
|
minimum=0,
|
|
maximum=10,
|
|
step=0.01,
|
|
info="Max Norm Regularization is a technique to stabilize network training by limiting the norm of network weights. It may be effective in suppressing overfitting of LoRA and improving stability when used with other LoRAs. See PR #545 on kohya_ss/sd_scripts repo for details. Recommended setting: 1. Higher is weaker, lower is stronger.",
|
|
interactive=True,
|
|
)
|
|
network_dropout = gr.Slider(
|
|
label="Network dropout",
|
|
value=0,
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
info="Is a normal probability dropout at the neuron level. In the case of LoRA, it is applied to the output of down. Recommended range 0.1 to 0.5",
|
|
)
|
|
rank_dropout = gr.Slider(
|
|
label="Rank dropout",
|
|
value=0,
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.01,
|
|
info="can specify `rank_dropout` to dropout each rank with specified probability. Recommended range 0.1 to 0.3",
|
|
)
|
|
module_dropout = gr.Slider(
|
|
label="Module dropout",
|
|
value=0.0,
|
|
minimum=0.0,
|
|
maximum=1.0,
|
|
step=0.01,
|
|
info="can specify `module_dropout` to dropout each rank with specified probability. Recommended range 0.1 to 0.3",
|
|
)
|
|
with gr.Row(visible=False):
|
|
unit = gr.Slider(
|
|
minimum=1,
|
|
maximum=64,
|
|
label="DyLoRA Unit / Block size",
|
|
value=1,
|
|
step=1,
|
|
interactive=True,
|
|
)
|
|
|
|
|
|
def update_LoRA_settings(
|
|
LoRA_type,
|
|
conv_dim,
|
|
network_dim,
|
|
):
|
|
log.debug("LoRA type changed...")
|
|
|
|
lora_settings_config = {
|
|
"network_row": {
|
|
"gr_type": gr.Row,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"Standard",
|
|
},
|
|
},
|
|
},
|
|
"convolution_row": {
|
|
"gr_type": gr.Row,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/GLoRA",
|
|
},
|
|
},
|
|
},
|
|
"kohya_advanced_lora": {
|
|
"gr_type": gr.Row,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Standard",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
},
|
|
},
|
|
},
|
|
"network_weights": {
|
|
"gr_type": gr.Textbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Standard",
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"network_weights_file": {
|
|
"gr_type": gr.Button,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Standard",
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"dim_from_weights": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Standard",
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoKr",
|
|
}
|
|
},
|
|
},
|
|
"factor": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"conv_dim": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"maximum": (
|
|
100000
|
|
if LoRA_type
|
|
in {
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
}
|
|
else 512
|
|
),
|
|
"value": conv_dim,
|
|
},
|
|
},
|
|
"network_dim": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"maximum": (
|
|
100000
|
|
if LoRA_type
|
|
in {
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
}
|
|
else 512
|
|
),
|
|
"value": network_dim,
|
|
},
|
|
},
|
|
"bypass_mode": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"dora_wd": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"use_cp": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/LoKr",
|
|
},
|
|
},
|
|
},
|
|
"use_tucker": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
"use_scalar": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
"rank_dropout_scale": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
"constrain": {
|
|
"gr_type": gr.Number,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
},
|
|
},
|
|
},
|
|
"rescaled": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
},
|
|
},
|
|
},
|
|
"train_norm": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
"decompose_both": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type in {"LyCORIS/LoKr"},
|
|
},
|
|
},
|
|
"train_on_input": {
|
|
"gr_type": gr.Checkbox,
|
|
"update_params": {
|
|
"visible": LoRA_type in {"LyCORIS/iA3"},
|
|
},
|
|
},
|
|
"scale_weight_norms": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoKr",
|
|
"Standard",
|
|
},
|
|
},
|
|
},
|
|
"network_dropout": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
"Standard",
|
|
},
|
|
},
|
|
},
|
|
"rank_dropout": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LoCon",
|
|
"Kohya DyLoRA",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKR",
|
|
"Kohya LoCon",
|
|
"LoRA-FA",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
"Standard",
|
|
},
|
|
},
|
|
},
|
|
"module_dropout": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LoCon",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"Kohya DyLoRA",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKR",
|
|
"Kohya LoCon",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
"LoRA-FA",
|
|
"Standard",
|
|
},
|
|
},
|
|
},
|
|
"LyCORIS_preset": {
|
|
"gr_type": gr.Dropdown,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/iA3",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
"unit": {
|
|
"gr_type": gr.Slider,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"Kohya DyLoRA",
|
|
"LyCORIS/DyLoRA",
|
|
},
|
|
},
|
|
},
|
|
"lycoris_accordion": {
|
|
"gr_type": gr.Accordion,
|
|
"update_params": {
|
|
"visible": LoRA_type
|
|
in {
|
|
"LyCORIS/DyLoRA",
|
|
"LyCORIS/iA3",
|
|
"LyCORIS/BOFT",
|
|
"LyCORIS/Diag-OFT",
|
|
"LyCORIS/GLoRA",
|
|
"LyCORIS/LoCon",
|
|
"LyCORIS/LoHa",
|
|
"LyCORIS/LoKr",
|
|
"LyCORIS/Native Fine-Tuning",
|
|
},
|
|
},
|
|
},
|
|
}
|
|
|
|
results = []
|
|
for attr, settings in lora_settings_config.items():
|
|
update_params = settings["update_params"]
|
|
|
|
results.append(settings["gr_type"](**update_params))
|
|
|
|
return tuple(results)
|
|
|
|
with gr.Accordion("Advanced", open=False, elem_id="advanced_tab"):
|
|
|
|
with gr.Row(visible=True) as kohya_advanced_lora:
|
|
with gr.Tab(label="Weights"):
|
|
with gr.Row(visible=True):
|
|
down_lr_weight = gr.Textbox(
|
|
label="Down LR weights",
|
|
placeholder="(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1",
|
|
info="Specify the learning rate weight of the down blocks of U-Net.",
|
|
)
|
|
mid_lr_weight = gr.Textbox(
|
|
label="Mid LR weights",
|
|
placeholder="(Optional) eg: 0.5",
|
|
info="Specify the learning rate weight of the mid block of U-Net.",
|
|
)
|
|
up_lr_weight = gr.Textbox(
|
|
label="Up LR weights",
|
|
placeholder="(Optional) eg: 0,0,0,0,0,0,1,1,1,1,1,1",
|
|
info="Specify the learning rate weight of the up blocks of U-Net. The same as down_lr_weight.",
|
|
)
|
|
block_lr_zero_threshold = gr.Textbox(
|
|
label="Blocks LR zero threshold",
|
|
placeholder="(Optional) eg: 0.1",
|
|
info="If the weight is not more than this value, the LoRA module is not created. The default is 0.",
|
|
)
|
|
with gr.Tab(label="Blocks"):
|
|
with gr.Row(visible=True):
|
|
block_dims = gr.Textbox(
|
|
label="Block dims",
|
|
placeholder="(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2",
|
|
info="Specify the dim (rank) of each block. Specify 25 numbers.",
|
|
)
|
|
block_alphas = gr.Textbox(
|
|
label="Block alphas",
|
|
placeholder="(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2",
|
|
info="Specify the alpha of each block. Specify 25 numbers as with block_dims. If omitted, the value of network_alpha is used.",
|
|
)
|
|
with gr.Tab(label="Conv"):
|
|
with gr.Row(visible=True):
|
|
conv_block_dims = gr.Textbox(
|
|
label="Conv dims",
|
|
placeholder="(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2",
|
|
info="Extend LoRA to Conv2d 3x3 and specify the dim (rank) of each block. Specify 25 numbers.",
|
|
)
|
|
conv_block_alphas = gr.Textbox(
|
|
label="Conv alphas",
|
|
placeholder="(Optional) eg: 2,2,2,2,4,4,4,4,6,6,6,6,8,6,6,6,6,4,4,4,4,2,2,2,2",
|
|
info="Specify the alpha of each block when expanding LoRA to Conv2d 3x3. Specify 25 numbers. If omitted, the value of conv_alpha is used.",
|
|
)
|
|
advanced_training = AdvancedTraining(
|
|
headless=headless, training_type="lora", config=config
|
|
)
|
|
advanced_training.color_aug.change(
|
|
color_aug_changed,
|
|
inputs=[advanced_training.color_aug],
|
|
outputs=[basic_training.cache_latents],
|
|
)
|
|
|
|
with gr.Accordion("Samples", open=False, elem_id="samples_tab"):
|
|
sample = SampleImages(config=config)
|
|
|
|
global huggingface
|
|
with gr.Accordion("HuggingFace", open=False):
|
|
huggingface = HuggingFace(config=config)
|
|
|
|
LoRA_type.change(
|
|
update_LoRA_settings,
|
|
inputs=[
|
|
LoRA_type,
|
|
conv_dim,
|
|
network_dim,
|
|
],
|
|
outputs=[
|
|
network_row,
|
|
convolution_row,
|
|
kohya_advanced_lora,
|
|
network_weights,
|
|
network_weights_file,
|
|
dim_from_weights,
|
|
factor,
|
|
conv_dim,
|
|
network_dim,
|
|
bypass_mode,
|
|
dora_wd,
|
|
use_cp,
|
|
use_tucker,
|
|
use_scalar,
|
|
rank_dropout_scale,
|
|
constrain,
|
|
rescaled,
|
|
train_norm,
|
|
decompose_both,
|
|
train_on_input,
|
|
scale_weight_norms,
|
|
network_dropout,
|
|
rank_dropout,
|
|
module_dropout,
|
|
LyCORIS_preset,
|
|
unit,
|
|
lycoris_accordion,
|
|
],
|
|
)
|
|
|
|
global executor
|
|
executor = CommandExecutor(headless=headless)
|
|
|
|
with gr.Column(), gr.Group():
|
|
with gr.Row():
|
|
button_print = gr.Button("Print training command")
|
|
|
|
|
|
TensorboardManager(headless=headless, logging_dir=folders.logging_dir)
|
|
|
|
settings_list = [
|
|
source_model.pretrained_model_name_or_path,
|
|
source_model.v2,
|
|
source_model.v_parameterization,
|
|
source_model.sdxl_checkbox,
|
|
folders.logging_dir,
|
|
source_model.train_data_dir,
|
|
folders.reg_data_dir,
|
|
folders.output_dir,
|
|
source_model.dataset_config,
|
|
basic_training.max_resolution,
|
|
basic_training.learning_rate,
|
|
basic_training.lr_scheduler,
|
|
basic_training.lr_warmup,
|
|
basic_training.train_batch_size,
|
|
basic_training.epoch,
|
|
basic_training.save_every_n_epochs,
|
|
accelerate_launch.mixed_precision,
|
|
source_model.save_precision,
|
|
basic_training.seed,
|
|
accelerate_launch.num_cpu_threads_per_process,
|
|
basic_training.cache_latents,
|
|
basic_training.cache_latents_to_disk,
|
|
basic_training.caption_extension,
|
|
basic_training.enable_bucket,
|
|
advanced_training.gradient_checkpointing,
|
|
advanced_training.fp8_base,
|
|
advanced_training.full_fp16,
|
|
|
|
basic_training.stop_text_encoder_training,
|
|
basic_training.min_bucket_reso,
|
|
basic_training.max_bucket_reso,
|
|
advanced_training.xformers,
|
|
source_model.save_model_as,
|
|
advanced_training.shuffle_caption,
|
|
advanced_training.save_state,
|
|
advanced_training.save_state_on_train_end,
|
|
advanced_training.resume,
|
|
advanced_training.prior_loss_weight,
|
|
text_encoder_lr,
|
|
unet_lr,
|
|
network_dim,
|
|
network_weights,
|
|
dim_from_weights,
|
|
advanced_training.color_aug,
|
|
advanced_training.flip_aug,
|
|
advanced_training.masked_loss,
|
|
advanced_training.clip_skip,
|
|
accelerate_launch.num_processes,
|
|
accelerate_launch.num_machines,
|
|
accelerate_launch.multi_gpu,
|
|
accelerate_launch.gpu_ids,
|
|
accelerate_launch.main_process_port,
|
|
advanced_training.gradient_accumulation_steps,
|
|
advanced_training.mem_eff_attn,
|
|
source_model.output_name,
|
|
source_model.model_list,
|
|
advanced_training.max_token_length,
|
|
basic_training.max_train_epochs,
|
|
basic_training.max_train_steps,
|
|
advanced_training.max_data_loader_n_workers,
|
|
network_alpha,
|
|
source_model.training_comment,
|
|
advanced_training.keep_tokens,
|
|
basic_training.lr_scheduler_num_cycles,
|
|
basic_training.lr_scheduler_power,
|
|
advanced_training.persistent_data_loader_workers,
|
|
advanced_training.bucket_no_upscale,
|
|
advanced_training.random_crop,
|
|
advanced_training.bucket_reso_steps,
|
|
advanced_training.v_pred_like_loss,
|
|
advanced_training.caption_dropout_every_n_epochs,
|
|
advanced_training.caption_dropout_rate,
|
|
basic_training.optimizer,
|
|
basic_training.optimizer_args,
|
|
basic_training.lr_scheduler_args,
|
|
basic_training.max_grad_norm,
|
|
advanced_training.noise_offset_type,
|
|
advanced_training.noise_offset,
|
|
advanced_training.noise_offset_random_strength,
|
|
advanced_training.adaptive_noise_scale,
|
|
advanced_training.multires_noise_iterations,
|
|
advanced_training.multires_noise_discount,
|
|
advanced_training.ip_noise_gamma,
|
|
advanced_training.ip_noise_gamma_random_strength,
|
|
LoRA_type,
|
|
factor,
|
|
bypass_mode,
|
|
dora_wd,
|
|
use_cp,
|
|
use_tucker,
|
|
use_scalar,
|
|
rank_dropout_scale,
|
|
constrain,
|
|
rescaled,
|
|
train_norm,
|
|
decompose_both,
|
|
train_on_input,
|
|
conv_dim,
|
|
conv_alpha,
|
|
sample.sample_every_n_steps,
|
|
sample.sample_every_n_epochs,
|
|
sample.sample_sampler,
|
|
sample.sample_prompts,
|
|
advanced_training.additional_parameters,
|
|
advanced_training.loss_type,
|
|
advanced_training.huber_schedule,
|
|
advanced_training.huber_c,
|
|
advanced_training.vae_batch_size,
|
|
advanced_training.min_snr_gamma,
|
|
down_lr_weight,
|
|
mid_lr_weight,
|
|
up_lr_weight,
|
|
block_lr_zero_threshold,
|
|
block_dims,
|
|
block_alphas,
|
|
conv_block_dims,
|
|
conv_block_alphas,
|
|
advanced_training.weighted_captions,
|
|
unit,
|
|
advanced_training.save_every_n_steps,
|
|
advanced_training.save_last_n_steps,
|
|
advanced_training.save_last_n_steps_state,
|
|
advanced_training.log_with,
|
|
advanced_training.wandb_api_key,
|
|
advanced_training.wandb_run_name,
|
|
advanced_training.log_tracker_name,
|
|
advanced_training.log_tracker_config,
|
|
advanced_training.scale_v_pred_loss_like_noise_pred,
|
|
scale_weight_norms,
|
|
network_dropout,
|
|
rank_dropout,
|
|
module_dropout,
|
|
sdxl_params.sdxl_cache_text_encoder_outputs,
|
|
sdxl_params.sdxl_no_half_vae,
|
|
advanced_training.full_bf16,
|
|
advanced_training.min_timestep,
|
|
advanced_training.max_timestep,
|
|
advanced_training.vae,
|
|
accelerate_launch.dynamo_backend,
|
|
accelerate_launch.dynamo_mode,
|
|
accelerate_launch.dynamo_use_fullgraph,
|
|
accelerate_launch.dynamo_use_dynamic,
|
|
accelerate_launch.extra_accelerate_launch_args,
|
|
LyCORIS_preset,
|
|
advanced_training.debiased_estimation_loss,
|
|
huggingface.huggingface_repo_id,
|
|
huggingface.huggingface_token,
|
|
huggingface.huggingface_repo_type,
|
|
huggingface.huggingface_repo_visibility,
|
|
huggingface.huggingface_path_in_repo,
|
|
huggingface.save_state_to_huggingface,
|
|
huggingface.resume_from_huggingface,
|
|
huggingface.async_upload,
|
|
metadata.metadata_author,
|
|
metadata.metadata_description,
|
|
metadata.metadata_license,
|
|
metadata.metadata_tags,
|
|
metadata.metadata_title,
|
|
]
|
|
|
|
configuration.button_open_config.click(
|
|
open_configuration,
|
|
inputs=[dummy_db_true, dummy_db_false, configuration.config_file_name]
|
|
+ settings_list
|
|
+ [training_preset],
|
|
outputs=[configuration.config_file_name]
|
|
+ settings_list
|
|
+ [training_preset, convolution_row],
|
|
show_progress=False,
|
|
)
|
|
|
|
configuration.button_load_config.click(
|
|
open_configuration,
|
|
inputs=[dummy_db_false, dummy_db_false, configuration.config_file_name]
|
|
+ settings_list
|
|
+ [training_preset],
|
|
outputs=[configuration.config_file_name]
|
|
+ settings_list
|
|
+ [training_preset, convolution_row],
|
|
show_progress=False,
|
|
)
|
|
|
|
training_preset.input(
|
|
open_configuration,
|
|
inputs=[dummy_db_false, dummy_db_true, configuration.config_file_name]
|
|
+ settings_list
|
|
+ [training_preset],
|
|
outputs=[gr.Textbox(visible=False)]
|
|
+ settings_list
|
|
+ [training_preset, convolution_row],
|
|
show_progress=False,
|
|
)
|
|
|
|
configuration.button_save_config.click(
|
|
save_configuration,
|
|
inputs=[dummy_db_false, configuration.config_file_name] + settings_list,
|
|
outputs=[configuration.config_file_name],
|
|
show_progress=False,
|
|
)
|
|
|
|
run_state = gr.Textbox(value=train_state_value, visible=False)
|
|
|
|
run_state.change(
|
|
fn=executor.wait_for_training_to_end,
|
|
outputs=[executor.button_run, executor.button_stop_training],
|
|
)
|
|
|
|
executor.button_run.click(
|
|
train_model,
|
|
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
|
|
outputs=[executor.button_run, executor.button_stop_training, run_state],
|
|
show_progress=False,
|
|
)
|
|
|
|
executor.button_stop_training.click(
|
|
executor.kill_command,
|
|
outputs=[executor.button_run, executor.button_stop_training],
|
|
)
|
|
|
|
button_print.click(
|
|
train_model,
|
|
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Tab("Tools"):
|
|
lora_tools = LoRATools(headless=headless)
|
|
|
|
with gr.Tab("Guides"):
|
|
gr.Markdown("This section provide Various LoRA guides and information...")
|
|
if os.path.exists(rf"{scriptdir}/docs/LoRA/top_level.md"):
|
|
with open(
|
|
os.path.join(rf"{scriptdir}/docs/LoRA/top_level.md"),
|
|
"r",
|
|
encoding="utf-8",
|
|
) as file:
|
|
guides_top_level = file.read() + "\n"
|
|
gr.Markdown(guides_top_level)
|
|
|
|
return (
|
|
source_model.train_data_dir,
|
|
folders.reg_data_dir,
|
|
folders.output_dir,
|
|
folders.logging_dir,
|
|
)
|
|
|