|
import gradio as gr
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
from .common_gui import (
|
|
get_saveasfilename_path,
|
|
get_file_path,
|
|
scriptdir,
|
|
list_files,
|
|
create_refresh_button, setup_environment
|
|
)
|
|
from .custom_logging import setup_logging
|
|
|
|
|
|
log = setup_logging()
|
|
|
|
folder_symbol = "\U0001f4c2"
|
|
refresh_symbol = "\U0001f504"
|
|
save_style_symbol = "\U0001f4be"
|
|
document_symbol = "\U0001F4C4"
|
|
|
|
PYTHON = sys.executable
|
|
|
|
|
|
def convert_lcm(
|
|
name,
|
|
model_path,
|
|
lora_scale,
|
|
model_type,
|
|
):
|
|
|
|
if not os.path.isfile(model_path):
|
|
log.error("The provided DyLoRA model is not a file")
|
|
return
|
|
|
|
if os.path.dirname(name) == "":
|
|
|
|
name = os.path.join(os.path.dirname(model_path), name)
|
|
if os.path.isdir(name):
|
|
|
|
name = os.path.join(name, "lcm.safetensors")
|
|
if os.path.normpath(model_path) == os.path.normpath(name):
|
|
|
|
path, ext = os.path.splitext(save_to)
|
|
save_to = f"{path}_lcm{ext}"
|
|
|
|
|
|
run_cmd = [
|
|
rf"{PYTHON}",
|
|
rf"{scriptdir}/tools/lcm_convert.py",
|
|
"--lora-scale",
|
|
str(lora_scale),
|
|
"--model",
|
|
rf"{model_path}",
|
|
"--name",
|
|
str(name),
|
|
]
|
|
|
|
if model_type == "SDXL":
|
|
run_cmd.append("--sdxl")
|
|
if model_type == "SSD-1B":
|
|
run_cmd.append("--ssd-1b")
|
|
|
|
|
|
env = setup_environment()
|
|
|
|
|
|
command_to_run = " ".join(run_cmd)
|
|
log.info(f"Executing command: {command_to_run}")
|
|
|
|
|
|
subprocess.run(run_cmd, env=env, shell=False)
|
|
|
|
|
|
log.info("Done extracting...")
|
|
|
|
|
|
def gradio_convert_lcm_tab(headless=False):
|
|
"""
|
|
Creates a Gradio tab for converting a model to an LCM model.
|
|
|
|
Args:
|
|
headless (bool): If True, the tab will be created without any visible elements.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
current_model_dir = os.path.join(scriptdir, "outputs")
|
|
current_save_dir = os.path.join(scriptdir, "outputs")
|
|
|
|
def list_models(path):
|
|
"""
|
|
Lists all model files in the given directory.
|
|
|
|
Args:
|
|
path (str): The directory path to search for model files.
|
|
|
|
Returns:
|
|
list: A list of model file paths.
|
|
"""
|
|
nonlocal current_model_dir
|
|
current_model_dir = path
|
|
return list(list_files(path, exts=[".safetensors"], all=True))
|
|
|
|
def list_save_to(path):
|
|
"""
|
|
Lists all save-to options for the given directory.
|
|
|
|
Args:
|
|
path (str): The directory path to search for save-to options.
|
|
|
|
Returns:
|
|
list: A list of save-to options.
|
|
"""
|
|
nonlocal current_save_dir
|
|
current_save_dir = path
|
|
return list(list_files(path, exts=[".safetensors"], all=True))
|
|
|
|
with gr.Tab("Convert to LCM"):
|
|
gr.Markdown("This utility convert a model to an LCM model.")
|
|
lora_ext = gr.Textbox(value="*.safetensors", visible=False)
|
|
lora_ext_name = gr.Textbox(value="LCM model types", visible=False)
|
|
model_ext = gr.Textbox(value="*.safetensors", visible=False)
|
|
model_ext_name = gr.Textbox(value="Model types", visible=False)
|
|
|
|
with gr.Group(), gr.Row():
|
|
model_path = gr.Dropdown(
|
|
label="Stable Diffusion model to convert to LCM",
|
|
interactive=True,
|
|
choices=[""] + list_models(current_model_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
model_path,
|
|
lambda: None,
|
|
lambda: {"choices": list_models(current_model_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_model_path_file = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_model_path_file.click(
|
|
get_file_path,
|
|
inputs=[model_path, model_ext, model_ext_name],
|
|
outputs=model_path,
|
|
show_progress=False,
|
|
)
|
|
|
|
name = gr.Dropdown(
|
|
label="Name of the new LCM model",
|
|
interactive=True,
|
|
choices=[""] + list_save_to(current_save_dir),
|
|
value="",
|
|
allow_custom_value=True,
|
|
)
|
|
create_refresh_button(
|
|
name,
|
|
lambda: None,
|
|
lambda: {"choices": list_save_to(current_save_dir)},
|
|
"open_folder_small",
|
|
)
|
|
button_name = gr.Button(
|
|
folder_symbol,
|
|
elem_id="open_folder_small",
|
|
elem_classes=["tool"],
|
|
visible=(not headless),
|
|
)
|
|
button_name.click(
|
|
get_saveasfilename_path,
|
|
inputs=[name, lora_ext, lora_ext_name],
|
|
outputs=name,
|
|
show_progress=False,
|
|
)
|
|
model_path.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_models(path)),
|
|
inputs=model_path,
|
|
outputs=model_path,
|
|
show_progress=False,
|
|
)
|
|
name.change(
|
|
fn=lambda path: gr.Dropdown(choices=[""] + list_save_to(path)),
|
|
inputs=name,
|
|
outputs=name,
|
|
show_progress=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
lora_scale = gr.Slider(
|
|
label="Strength of the LCM",
|
|
minimum=0.0,
|
|
maximum=2.0,
|
|
step=0.1,
|
|
value=1.0,
|
|
interactive=True,
|
|
)
|
|
|
|
|
|
model_type = gr.Radio(
|
|
label="Model type", choices=["SD15", "SDXL", "SD-1B"], value="SD15"
|
|
)
|
|
|
|
extract_button = gr.Button("Extract LCM")
|
|
|
|
extract_button.click(
|
|
convert_lcm,
|
|
inputs=[
|
|
name,
|
|
model_path,
|
|
lora_scale,
|
|
model_type,
|
|
],
|
|
show_progress=False,
|
|
)
|
|
|