Spaces:
Sleeping
Sleeping
Marcos12886
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,29 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
token = os.getenv("HF_TOKEN")
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
model
|
|
|
|
|
13 |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token)
|
14 |
# client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=token)
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
return label
|
25 |
-
|
26 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
27 |
messages = [{"role": "system", "content": system_message}]
|
28 |
for val in history:
|
29 |
if val[0]:
|
@@ -32,14 +32,17 @@ def respond(message, history: list[tuple[str, str]], system_message, max_tokens,
|
|
32 |
messages.append({"role": "assistant", "content": val[1]})
|
33 |
messages.append({"role": "user", "content": message})
|
34 |
response = ""
|
35 |
-
for message in client.chat_completion(
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
token = message.choices[0].delta.content
|
37 |
response += token
|
38 |
yield response
|
39 |
|
40 |
-
def cambiar_pestaña():
|
41 |
-
return gr.update(visible=False), gr.update(visible=True)
|
42 |
-
|
43 |
my_theme = gr.themes.Soft(
|
44 |
primary_hue="emerald",
|
45 |
secondary_hue="green",
|
@@ -57,6 +60,24 @@ my_theme = gr.themes.Soft(
|
|
57 |
shadow_spread='*button_shadow_active'
|
58 |
)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with gr.Blocks(theme=my_theme) as demo:
|
61 |
with gr.Column(visible=True, elem_id="pantalla-inicial") as pantalla_inicial:
|
62 |
gr.HTML(
|
@@ -143,13 +164,14 @@ with gr.Blocks(theme=my_theme) as demo:
|
|
143 |
gr.Markdown("<h2>Predictor</h2>")
|
144 |
audio_input = gr.Audio(
|
145 |
min_length=1.0,
|
|
|
146 |
format="wav",
|
147 |
-
|
148 |
-
|
149 |
-
)
|
150 |
classify_btn = gr.Button("¿Por qué llora?")
|
151 |
classification_output = gr.Textbox(label="Tu bebé llora por:")
|
152 |
-
classify_btn.click(
|
153 |
with gr.Column():
|
154 |
gr.Markdown("<h2>Assistant</h2>")
|
155 |
system_message = "You are a Chatbot specialized in baby health and care."
|
@@ -157,7 +179,7 @@ with gr.Blocks(theme=my_theme) as demo:
|
|
157 |
temperature = 0.7
|
158 |
top_p = 0.95
|
159 |
chatbot = gr.ChatInterface(
|
160 |
-
respond,
|
161 |
additional_inputs=[
|
162 |
gr.State(value=system_message),
|
163 |
gr.State(value=max_tokens),
|
@@ -166,11 +188,13 @@ with gr.Blocks(theme=my_theme) as demo:
|
|
166 |
],
|
167 |
)
|
168 |
gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.")
|
169 |
-
boton_volver_inicio_1 = gr.Button("Volver a la pantalla inicial")
|
|
|
170 |
with gr.Column(visible=False) as pagina_2:
|
171 |
gr.Markdown("<h2>Monitor</h2>")
|
172 |
gr.Markdown("Contenido de la Página 2")
|
173 |
-
boton_volver_inicio_2 = gr.Button("Volver a la pantalla inicial")
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
from transformers import pipeline
|
5 |
+
import numpy as np
|
6 |
+
from model import SAMPLING_RATE, FEATURE_EXTRACTOR
|
7 |
|
8 |
token = os.getenv("HF_TOKEN")
|
9 |
+
# modelo = "mixed-data"
|
10 |
+
modelo = "cry-detector"
|
11 |
+
pipe = pipeline(
|
12 |
+
"audio-classification",
|
13 |
+
model=f"A-POR-LOS-8000/distilhubert-finetuned-{modelo}",
|
14 |
+
use_auth_token=token
|
15 |
+
)
|
16 |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token)
|
17 |
# client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=token)
|
18 |
|
19 |
+
def respond(
|
20 |
+
message,
|
21 |
+
history: list[tuple[str, str]],
|
22 |
+
system_message,
|
23 |
+
max_tokens,
|
24 |
+
temperature,
|
25 |
+
top_p,
|
26 |
+
):
|
|
|
|
|
|
|
27 |
messages = [{"role": "system", "content": system_message}]
|
28 |
for val in history:
|
29 |
if val[0]:
|
|
|
32 |
messages.append({"role": "assistant", "content": val[1]})
|
33 |
messages.append({"role": "user", "content": message})
|
34 |
response = ""
|
35 |
+
for message in client.chat_completion(
|
36 |
+
messages,
|
37 |
+
max_tokens=max_tokens,
|
38 |
+
stream=True,
|
39 |
+
temperature=temperature,
|
40 |
+
top_p=top_p,
|
41 |
+
):
|
42 |
token = message.choices[0].delta.content
|
43 |
response += token
|
44 |
yield response
|
45 |
|
|
|
|
|
|
|
46 |
my_theme = gr.themes.Soft(
|
47 |
primary_hue="emerald",
|
48 |
secondary_hue="green",
|
|
|
60 |
shadow_spread='*button_shadow_active'
|
61 |
)
|
62 |
|
63 |
+
def mostrar_pagina_1():
|
64 |
+
return gr.update(visible=False), gr.update(visible=True)
|
65 |
+
|
66 |
+
def mostrar_pagina_2():
|
67 |
+
return gr.update(visible=False), gr.update(visible=True)
|
68 |
+
|
69 |
+
def redirigir_a_pantalla_inicial():
|
70 |
+
return gr.update(visible=True), gr.update(visible=False)
|
71 |
+
|
72 |
+
def transcribe(audio):
|
73 |
+
_, y = audio
|
74 |
+
y = y.astype(np.float32) # con torch.float32 da error
|
75 |
+
y /= np.max(np.abs(y))
|
76 |
+
results = pipe({"sampling_rate": SAMPLING_RATE, "raw": y})
|
77 |
+
top_result = results[0] # Get the top result (most likely classification)
|
78 |
+
label = top_result["label"] # Extract the label from the top result
|
79 |
+
return label
|
80 |
+
|
81 |
with gr.Blocks(theme=my_theme) as demo:
|
82 |
with gr.Column(visible=True, elem_id="pantalla-inicial") as pantalla_inicial:
|
83 |
gr.HTML(
|
|
|
164 |
gr.Markdown("<h2>Predictor</h2>")
|
165 |
audio_input = gr.Audio(
|
166 |
min_length=1.0,
|
167 |
+
# max_length=10.0,
|
168 |
format="wav",
|
169 |
+
# type="numpy",
|
170 |
+
label="Baby recorder"
|
171 |
+
),
|
172 |
classify_btn = gr.Button("¿Por qué llora?")
|
173 |
classification_output = gr.Textbox(label="Tu bebé llora por:")
|
174 |
+
classify_btn.click(transcribe, inputs=audio_input, outputs=classification_output)
|
175 |
with gr.Column():
|
176 |
gr.Markdown("<h2>Assistant</h2>")
|
177 |
system_message = "You are a Chatbot specialized in baby health and care."
|
|
|
179 |
temperature = 0.7
|
180 |
top_p = 0.95
|
181 |
chatbot = gr.ChatInterface(
|
182 |
+
respond,
|
183 |
additional_inputs=[
|
184 |
gr.State(value=system_message),
|
185 |
gr.State(value=max_tokens),
|
|
|
188 |
],
|
189 |
)
|
190 |
gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.")
|
191 |
+
boton_volver_inicio_1 = gr.Button("Volver a la pantalla inicial")
|
192 |
+
boton_volver_inicio_1.click(redirigir_a_pantalla_inicial, inputs=None, outputs=[pantalla_inicial, pagina_1])
|
193 |
with gr.Column(visible=False) as pagina_2:
|
194 |
gr.Markdown("<h2>Monitor</h2>")
|
195 |
gr.Markdown("Contenido de la Página 2")
|
196 |
+
boton_volver_inicio_2 = gr.Button("Volver a la pantalla inicial")
|
197 |
+
boton_volver_inicio_2.click(redirigir_a_pantalla_inicial, inputs=None, outputs=[pantalla_inicial, pagina_2])
|
198 |
+
boton_pagina_1.click(mostrar_pagina_1, inputs=None, outputs=[pantalla_inicial, pagina_1])
|
199 |
+
boton_pagina_2.click(mostrar_pagina_2, inputs=None, outputs=[pantalla_inicial, pagina_2])
|
200 |
+
demo.launch()
|