Spaces:
Running
Running
Marcos12886
commited on
Commit
•
5cf41d0
1
Parent(s):
a921dc5
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
from model import SAMPLING_RATE, clasificador, monitor
|
5 |
+
# modelo = monitor
|
6 |
+
modelo = clasificador
|
7 |
+
pipe = pipeline("audio-classification", model=f"A-POR-LOS-8000/distilhubert-finetuned-cry-detector", device="cuda")
|
8 |
+
|
9 |
+
def transcribe(audio):
|
10 |
+
_, y = audio
|
11 |
+
y = y.astype(np.float32) # con torch.float32 da error
|
12 |
+
y /= np.max(np.abs(y))
|
13 |
+
results = pipe({"sampling_rate": SAMPLING_RATE, "raw": y})
|
14 |
+
top_result = results[0] # Get the top result (most likely classification)
|
15 |
+
label = top_result["label"] # Extract the label from the top result
|
16 |
+
return label
|
17 |
+
|
18 |
+
demo = gr.Interface(
|
19 |
+
transcribe,
|
20 |
+
gr.Audio(
|
21 |
+
min_length=1.0,
|
22 |
+
max_length=10.0,
|
23 |
+
format="wav",
|
24 |
+
),
|
25 |
+
"text",
|
26 |
+
)
|
27 |
+
demo.launch()
|