File size: 2,084 Bytes
a032f99
 
1d21972
 
a032f99
1d21972
 
a032f99
1d21972
a032f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d21972
 
a032f99
1d21972
 
 
 
a032f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
{
    "mon": {
        "dataset_path": "A-POR-LOS-8000/data/baby_cry_detection",
        "output_dir": "A-POR-LOS-8000/distilhubert-finetuned-cry-detector",
        "training_args": {
            "num_train_epochs": 10, 
            "learning_rate": 0.00003,
            "warmup_ratio": 0.001,
            "output_dir": "A-POR-LOS-8000/distilhubert-finetuned-cry-detector",
            "eval_strategy": "epoch",
            "save_strategy": "epoch",
            "lr_scheduler_type": "cosine",
            "auto_find_batch_size": true,
            "per_device_train_batch_size": 8,
            "per_device_eval_batch_size": 8,
            "gradient_accumulation_steps": 8,
            "gradient_checkpointing": true,
            "load_best_model_at_end": true,
            "greater_is_better": true,
            "metric_for_best_model": "accuracy",
            "optim": "adamw_torch",
            "hub_strategy": "checkpoint",
            "report_to": "tensorboard",
            "full_determinism": true,
            "seed": 123,
            "data_seed":123
        }
    },
    "class": {
        "dataset_path": "A-POR-LOS-8000/data/mixed_data",
        "output_dir": "A-POR-LOS-8000/distilhubert-finetuned-mixed-data",
        "training_args": {
            "num_train_epochs": 15,
            "learning_rate": 0.0003,
            "warmup_ratio": 0.4,
            "output_dir": "A-POR-LOS-8000/distilhubert-finetuned-mixed-data",
            "eval_strategy": "epoch",
            "save_strategy": "epoch",
            "lr_scheduler_type": "cosine",
            "auto_find_batch_size": true,
            "per_device_train_batch_size": 8,
            "per_device_eval_batch_size": 8,
            "gradient_accumulation_steps": 8,
            "gradient_checkpointing": true,
            "load_best_model_at_end": true,
            "greater_is_better": true,
            "optim": "adamw_torch",
            "hub_strategy": "checkpoint",
            "report_to": "tensorboard",
            "full_determinism": true,
            "seed": 123,
            "data_seed":123
        }
    }
}