|
from __future__ import annotations |
|
|
|
import gc |
|
import pathlib |
|
import sys |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import numpy as np |
|
|
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
sys.path.insert(0, './custom-diffusion') |
|
|
|
|
|
class InferencePipeline: |
|
def __init__(self): |
|
self.pipe = None |
|
self.device = torch.device( |
|
'cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.weight_path = None |
|
|
|
def clear(self) -> None: |
|
self.weight_path = None |
|
del self.pipe |
|
self.pipe = None |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
@staticmethod |
|
def get_weight_path(name: str) -> pathlib.Path: |
|
curr_dir = pathlib.Path(__file__).parent |
|
return curr_dir / name |
|
|
|
def load_pipe(self, model_id: str, filename: str) -> None: |
|
weight_path = self.get_weight_path(filename) |
|
if weight_path == self.weight_path: |
|
return |
|
self.weight_path = weight_path |
|
weight = torch.load(self.weight_path, map_location=self.device) |
|
|
|
if self.device.type == 'cpu': |
|
pipe = StableDiffusionPipeline.from_pretrained(model_id) |
|
else: |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, torch_dtype=torch.float16) |
|
pipe = pipe.to(self.device) |
|
|
|
from src import diffuser_training |
|
diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, '<new1>') |
|
|
|
self.pipe = pipe |
|
|
|
def run( |
|
self, |
|
base_model: str, |
|
weight_name: str, |
|
prompt: str, |
|
seed: int, |
|
n_steps: int, |
|
guidance_scale: float, |
|
eta: float, |
|
batch_size: int, |
|
resolution: int, |
|
) -> PIL.Image.Image: |
|
if not torch.cuda.is_available(): |
|
raise gr.Error('CUDA is not available.') |
|
|
|
self.load_pipe(base_model, weight_name) |
|
|
|
generator = torch.Generator(device=self.device).manual_seed(seed) |
|
out = self.pipe([prompt]*batch_size, |
|
num_inference_steps=n_steps, |
|
guidance_scale=guidance_scale, |
|
height=resolution, width=resolution, |
|
eta = eta, |
|
generator=generator) |
|
out = out.images |
|
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out])) |
|
return out |
|
|