Create main_test_HWMNet.py
Browse files- main_test_HWMNet.py +86 -0
main_test_HWMNet.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import cv2
|
3 |
+
import glob
|
4 |
+
import numpy as np
|
5 |
+
from collections import OrderedDict
|
6 |
+
from skimage import img_as_ubyte
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
import requests
|
10 |
+
from PIL import Image
|
11 |
+
import torchvision.transforms.functional as TF
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from natsort import natsorted
|
14 |
+
from model.HWMNet import HWMNet
|
15 |
+
|
16 |
+
def main():
|
17 |
+
parser = argparse.ArgumentParser(description='Demo Low-light Image enhancement')
|
18 |
+
parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
|
19 |
+
parser.add_argument('--result_dir', default='result/', type=str, help='Directory for results')
|
20 |
+
parser.add_argument('--weights',
|
21 |
+
default='experiments/pretrained_models/LOL_enhancement_HWMNet.pth', type=str,
|
22 |
+
help='Path to weights')
|
23 |
+
|
24 |
+
args = parser.parse_args()
|
25 |
+
|
26 |
+
inp_dir = args.input_dir
|
27 |
+
out_dir = args.result_dir
|
28 |
+
|
29 |
+
os.makedirs(out_dir, exist_ok=True)
|
30 |
+
|
31 |
+
files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
|
32 |
+
|
33 |
+
if len(files) == 0:
|
34 |
+
raise Exception(f"No files found at {inp_dir}")
|
35 |
+
|
36 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
+
|
38 |
+
# Load corresponding models architecture and weights
|
39 |
+
model = HWMNet(in_chn=3, wf=96, depth=4)
|
40 |
+
model = model.to(device)
|
41 |
+
model.eval()
|
42 |
+
load_checkpoint(model, args.weights)
|
43 |
+
|
44 |
+
|
45 |
+
mul = 16
|
46 |
+
for file_ in files:
|
47 |
+
img = Image.open(file_).convert('RGB')
|
48 |
+
input_ = TF.to_tensor(img).unsqueeze(0).to(device)
|
49 |
+
|
50 |
+
# Pad the input if not_multiple_of 8
|
51 |
+
h, w = input_.shape[2], input_.shape[3]
|
52 |
+
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
53 |
+
padh = H - h if h % mul != 0 else 0
|
54 |
+
padw = W - w if w % mul != 0 else 0
|
55 |
+
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
56 |
+
with torch.no_grad():
|
57 |
+
restored = model(input_)
|
58 |
+
|
59 |
+
restored = torch.clamp(restored, 0, 1)
|
60 |
+
restored = restored[:, :, :h, :w]
|
61 |
+
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
62 |
+
restored = img_as_ubyte(restored[0])
|
63 |
+
|
64 |
+
f = os.path.splitext(os.path.split(file_)[-1])[0]
|
65 |
+
save_img((os.path.join(out_dir, f + '.png')), restored)
|
66 |
+
|
67 |
+
|
68 |
+
def save_img(filepath, img):
|
69 |
+
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
70 |
+
|
71 |
+
|
72 |
+
def load_checkpoint(model, weights):
|
73 |
+
checkpoint = torch.load(weights, map_location=torch.device('cpu'))
|
74 |
+
try:
|
75 |
+
model.load_state_dict(checkpoint["state_dict"])
|
76 |
+
except:
|
77 |
+
state_dict = checkpoint["state_dict"]
|
78 |
+
new_state_dict = OrderedDict()
|
79 |
+
for k, v in state_dict.items():
|
80 |
+
name = k[7:] # remove `module.`
|
81 |
+
new_state_dict[name] = v
|
82 |
+
model.load_state_dict(new_state_dict)
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
main()
|