|
import argparse |
|
import cv2 |
|
import glob |
|
import numpy as np |
|
from collections import OrderedDict |
|
from skimage import img_as_ubyte |
|
import os |
|
import torch |
|
import requests |
|
from PIL import Image |
|
import torchvision.transforms.functional as TF |
|
import torch.nn.functional as F |
|
from natsort import natsorted |
|
from model.HWMNet import HWMNet |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Demo Low-light Image enhancement') |
|
parser.add_argument('--input_dir', default='test/', type=str, help='Input images') |
|
parser.add_argument('--result_dir', default='result/', type=str, help='Directory for results') |
|
parser.add_argument('--weights', |
|
default='experiments/pretrained_models/LOL_enhancement_HWMNet.pth', type=str, |
|
help='Path to weights') |
|
|
|
args = parser.parse_args() |
|
|
|
inp_dir = args.input_dir |
|
out_dir = args.result_dir |
|
|
|
os.makedirs(out_dir, exist_ok=True) |
|
|
|
files = natsorted(glob.glob(os.path.join(inp_dir, '*'))) |
|
|
|
if len(files) == 0: |
|
raise Exception(f"No files found at {inp_dir}") |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
model = HWMNet(in_chn=3, wf=96, depth=4) |
|
model = model.to(device) |
|
model.eval() |
|
load_checkpoint(model, args.weights) |
|
|
|
|
|
mul = 16 |
|
for file_ in files: |
|
img = Image.open(file_).convert('RGB') |
|
input_ = TF.to_tensor(img).unsqueeze(0).to(device) |
|
|
|
|
|
h, w = input_.shape[2], input_.shape[3] |
|
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul |
|
padh = H - h if h % mul != 0 else 0 |
|
padw = W - w if w % mul != 0 else 0 |
|
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') |
|
with torch.no_grad(): |
|
restored = model(input_) |
|
|
|
restored = torch.clamp(restored, 0, 1) |
|
restored = restored[:, :, :h, :w] |
|
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() |
|
restored = img_as_ubyte(restored[0]) |
|
|
|
f = os.path.splitext(os.path.split(file_)[-1])[0] |
|
save_img((os.path.join(out_dir, f + '.png')), restored) |
|
|
|
|
|
def save_img(filepath, img): |
|
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) |
|
|
|
|
|
def load_checkpoint(model, weights): |
|
checkpoint = torch.load(weights, map_location=torch.device('cpu')) |
|
try: |
|
model.load_state_dict(checkpoint["state_dict"]) |
|
except: |
|
state_dict = checkpoint["state_dict"] |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
name = k[7:] |
|
new_state_dict[name] = v |
|
model.load_state_dict(new_state_dict) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |