|
import os |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
|
|
os.system('wget https://github.com/FanChiMao/HWMNet/releases/download/v0.0/LOL_enhancement_HWMNet.pth -P experiments/pretrained_models') |
|
os.system('wget https://github.com/FanChiMao/HWMNet/releases/download/v0.0/MIT5K_enhancement_HWMNet.pth -P experiments/pretrained_models') |
|
|
|
def inference(img, model): |
|
os.system('mkdir test') |
|
|
|
|
|
|
|
|
|
img.save("test/1.png", "PNG") |
|
if model == 'LOL': |
|
os.system('python main_test_HWMNet.py --input_dir test --weights experiments/pretrained_models/LOL_enhancement_HWMNet.pth') |
|
elif model == 'MIT-5K': |
|
os.system('python main_test_HWMNet.py --input_dir test --weights experiments/pretrained_models/MIT5K_enhancement_HWMNet.pth') |
|
|
|
return 'result/1.png' |
|
|
|
|
|
title = "Half Wavelet Attention on M-Net+ for Low-light Image Enhancement" |
|
description = "Gradio demo for HWMNet. HWMNet has competitive performance results on two real-world low-light datasets in terms of quantitative metrics and visual quality. See the paper and project page for detailed results below. Here, we provide a demo for low-light image enhancement. To use it, simply upload your image, or click one of the examples to load them. We present 2 pretrained models, which is trained on LOL and MIT-Adobe FiveK dataset, respectively. The images in LOL dataset are darker than MIT-Adobe FiveK, so if you have the extremely dark images you could consider it. On the contrary, the MIT-Adobe FiveK's model is suitable for minor adjustment of the images' hue." |
|
article = "<p style='text-align: center'><a href='https://ieeexplore.ieee.org/document/9897503' target='_blank'>Half Wavelet Attention on M-Net+ for Low-light Image Enhancement</a> | <a href='https://github.com/FanChiMao/HWMNet' target='_blank'>Github Repo</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=52Hz_HWMNet_lowlight_enhancement' alt='visitor badge'></center>" |
|
|
|
examples = [['low-light.png', 'LOL'], ['low-light_2.png', 'MIT-5K']] |
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="pil", label="Input"), gr.inputs.Dropdown(choices=['LOL', 'MIT-5K'], type="value", default='LOL', label="model")], |
|
gr.outputs.Image(type="filepath", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
allow_flagging=False, |
|
allow_screenshot=False, |
|
examples=examples |
|
).launch(debug=True) |