File size: 10,227 Bytes
9c33d88
 
a7017fb
9c33d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import torch.nn as nn
from WT.transform import DWT, IWT

##---------- Basic Layers ----------
def conv3x3(in_chn, out_chn, bias=True):
    layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)
    return layer

def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size // 2), bias=bias, stride=stride)

def bili_resize(factor):
    return nn.Upsample(scale_factor=factor, mode='bilinear', align_corners=False)

##---------- Basic Blocks ----------
class UNetConvBlock(nn.Module):
    def __init__(self, in_size, out_size, downsample):
        super(UNetConvBlock, self).__init__()
        self.downsample = downsample
        self.body = [HWB(n_feat=in_size, o_feat=in_size, kernel_size=3, reduction=16, bias=False, act=nn.PReLU())]# for _ in range(wab)]
        self.body = nn.Sequential(*self.body)

        if downsample:
            self.downsample = PS_down(out_size, out_size, downscale=2)

        self.tail = nn.Conv2d(in_size, out_size, kernel_size=1)

    def forward(self, x):
        out = self.body(x)
        out = self.tail(out)
        if self.downsample:
            out_down = self.downsample(out)
            return out_down, out
        else:
            return out

class UNetUpBlock(nn.Module):
    def __init__(self, in_size, out_size):
        super(UNetUpBlock, self).__init__()
        self.up = PS_up(in_size, out_size, upscale=2)
        self.conv_block = UNetConvBlock(in_size, out_size, downsample=False)

    def forward(self, x, bridge):
        up = self.up(x)
        out = torch.cat([up, bridge], dim=1)
        out = self.conv_block(out)
        return out

##---------- Resizing Modules (Pixel(Un)Shuffle) ----------
class PS_down(nn.Module):
    def __init__(self, in_size, out_size, downscale):
        super(PS_down, self).__init__()
        self.UnPS = nn.PixelUnshuffle(downscale)
        self.conv1 = nn.Conv2d((downscale**2) * in_size, out_size, 1, 1, 0)

    def forward(self, x):
        x = self.UnPS(x)  # h/2, w/2, 4*c
        x = self.conv1(x)
        return x

class PS_up(nn.Module):
    def __init__(self, in_size, out_size, upscale):
        super(PS_up, self).__init__()

        self.PS = nn.PixelShuffle(upscale)
        self.conv1 = nn.Conv2d(in_size//(upscale**2), out_size, 1, 1, 0)

    def forward(self, x):
        x = self.PS(x)  # h/2, w/2, 4*c
        x = self.conv1(x)
        return x

##---------- Selective Kernel Feature Fusion (SKFF) ----------
class SKFF(nn.Module):
    def __init__(self, in_channels, height=3, reduction=8, bias=False):
        super(SKFF, self).__init__()

        self.height = height
        d = max(int(in_channels / reduction), 4)

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv_du = nn.Sequential(nn.Conv2d(in_channels, d, 1, padding=0, bias=bias), nn.PReLU())

        self.fcs = nn.ModuleList([])
        for i in range(self.height):
            self.fcs.append(nn.Conv2d(d, in_channels, kernel_size=1, stride=1, bias=bias))

        self.softmax = nn.Softmax(dim=1)

    def forward(self, inp_feats):
        batch_size, n_feats, H, W = inp_feats[1].shape

        inp_feats = torch.cat(inp_feats, dim=1)
        inp_feats = inp_feats.view(batch_size, self.height, n_feats, inp_feats.shape[2], inp_feats.shape[3])

        feats_U = torch.sum(inp_feats, dim=1)
        feats_S = self.avg_pool(feats_U)
        feats_Z = self.conv_du(feats_S)

        attention_vectors = [fc(feats_Z) for fc in self.fcs]
        attention_vectors = torch.cat(attention_vectors, dim=1)
        attention_vectors = attention_vectors.view(batch_size, self.height, n_feats, 1, 1)

        attention_vectors = self.softmax(attention_vectors)
        feats_V = torch.sum(inp_feats * attention_vectors, dim=1)

        return feats_V


##########################################################################
# Spatial Attention Layer
class SALayer(nn.Module):
    def __init__(self, kernel_size=5, bias=False):
        super(SALayer, self).__init__()
        self.conv_du = nn.Sequential(
            nn.Conv2d(2, 1, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias),
            nn.Sigmoid()
        )

    def forward(self, x):
        # torch.max will output 2 things, and we want the 1st one
        max_pool, _ = torch.max(x, dim=1, keepdim=True)
        avg_pool = torch.mean(x, 1, keepdim=True)
        channel_pool = torch.cat([max_pool, avg_pool], dim=1)  # [N,2,H,W]  could add 1x1 conv -> [N,3,H,W]
        y = self.conv_du(channel_pool)

        return x * y

##########################################################################
# Channel Attention Layer
class CALayer(nn.Module):
    def __init__(self, channel, reduction=16, bias=False):
        super(CALayer, self).__init__()
        # global average pooling: feature --> point
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # feature channel downscale and upscale --> channel weight
        self.conv_du = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
            nn.ReLU(inplace=True),
            nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias),
            nn.Sigmoid()
        )

    def forward(self, x):
        y = self.avg_pool(x)
        y = self.conv_du(y)
        return x * y

##########################################################################
# Half Wavelet Dual Attention Block (HWB)
class HWB(nn.Module):
    def __init__(self, n_feat, o_feat, kernel_size, reduction, bias, act):
        super(HWB, self).__init__()
        self.dwt = DWT()
        self.iwt = IWT()

        modules_body = \
            [
                conv(n_feat*2, n_feat, kernel_size, bias=bias),
                act,
                conv(n_feat, n_feat*2, kernel_size, bias=bias)
            ]
        self.body = nn.Sequential(*modules_body)

        self.WSA = SALayer()
        self.WCA = CALayer(n_feat*2, reduction, bias=bias)

        self.conv1x1 = nn.Conv2d(n_feat*4, n_feat*2, kernel_size=1, bias=bias)
        self.conv3x3 = nn.Conv2d(n_feat, o_feat, kernel_size=3, padding=1, bias=bias)
        self.activate = act
        self.conv1x1_final = nn.Conv2d(n_feat, o_feat, kernel_size=1, bias=bias)

    def forward(self, x):
        residual = x

        # Split 2 part
        wavelet_path_in, identity_path = torch.chunk(x, 2, dim=1)

        # Wavelet domain (Dual attention)
        x_dwt = self.dwt(wavelet_path_in)
        res = self.body(x_dwt)
        branch_sa = self.WSA(res)
        branch_ca = self.WCA(res)
        res = torch.cat([branch_sa, branch_ca], dim=1)
        res = self.conv1x1(res) + x_dwt
        wavelet_path = self.iwt(res)

        out = torch.cat([wavelet_path, identity_path], dim=1)
        out = self.activate(self.conv3x3(out))
        out += self.conv1x1_final(residual)

        return out


##########################################################################
##---------- HWMNet-LOL ----------
class HWMNet(nn.Module):
    def __init__(self, in_chn=3, wf=64, depth=4):
        super(HWMNet, self).__init__()
        self.depth = depth
        self.down_path = nn.ModuleList()
        self.bili_down = bili_resize(0.5)
        self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1)

        # encoder of UNet-64
        prev_channels = 0
        for i in range(depth):  # 0,1,2,3
            downsample = True if (i + 1) < depth else False
            self.down_path.append(UNetConvBlock(prev_channels + wf, (2 ** i) * wf, downsample))
            prev_channels = (2 ** i) * wf

        # decoder of UNet-64
        self.up_path = nn.ModuleList()
        self.skip_conv = nn.ModuleList()
        self.conv_up = nn.ModuleList()
        self.bottom_conv = nn.Conv2d(prev_channels, wf, 3, 1, 1)
        self.bottom_up = bili_resize(2 ** (depth-1))

        for i in reversed(range(depth - 1)):
            self.up_path.append(UNetUpBlock(prev_channels, (2 ** i) * wf))
            self.skip_conv.append(nn.Conv2d((2 ** i) * wf, (2 ** i) * wf, 3, 1, 1))
            self.conv_up.append(nn.Sequential(*[bili_resize(2 ** i), nn.Conv2d((2 ** i) * wf, wf, 3, 1, 1)]))
            prev_channels = (2 ** i) * wf

        self.final_ff = SKFF(in_channels=wf, height=depth)
        self.last = conv3x3(prev_channels, in_chn, bias=True)

    def forward(self, x):
        img = x
        scale_img = img

        ##### shallow conv #####
        x1 = self.conv_01(img)
        encs = []
        ######## UNet-64 ########
        # Down-path (Encoder)
        for i, down in enumerate(self.down_path):
            if i == 0:
                x1, x1_up = down(x1)
                encs.append(x1_up)
            elif (i + 1) < self.depth:
                scale_img = self.bili_down(scale_img)
                left_bar = self.conv_01(scale_img)
                x1 = torch.cat([x1, left_bar], dim=1)
                x1, x1_up = down(x1)
                encs.append(x1_up)
            else:
                scale_img = self.bili_down(scale_img)
                left_bar = self.conv_01(scale_img)
                x1 = torch.cat([x1, left_bar], dim=1)
                x1 = down(x1)

        # Up-path (Decoder)
        ms_result = [self.bottom_up(self.bottom_conv(x1))]
        for i, up in enumerate(self.up_path):
            x1 = up(x1, self.skip_conv[i](encs[-i - 1]))
            ms_result.append(self.conv_up[i](x1))
        # Multi-scale selective feature fusion
        msff_result = self.final_ff(ms_result)

        ##### Reconstruct #####
        out_1 = self.last(msff_result) + img

        return out_1

if __name__ == "__main__":
    input = torch.ones(1, 3, 400, 592, dtype=torch.float, requires_grad=False).cuda()

    model = HWMNet(in_chn=3, wf=96, depth=4).cuda()
    out = model(input)
    flops, params = profile(model, inputs=(input,))

    # RDBlayer = SK_RDB(in_channels=64, growth_rate=64, num_layers=3)
    # print(RDBlayer)
    # out = RDBlayer(input)
    # flops, params = profile(RDBlayer, inputs=(input,))
    print('input shape:', input.shape)
    print('parameters:', params/1e6)
    print('flops', flops/1e9)
    print('output shape', out.shape)