File size: 8,556 Bytes
19cef65
 
 
 
 
 
 
 
 
 
 
 
 
6d33199
19cef65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb04c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cef65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d33199
 
 
19cef65
6d33199
19cef65
 
6d33199
0ab3cc6
6d33199
 
 
 
 
 
19cef65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb04c6
6d33199
 
 
 
 
3fb04c6
19cef65
 
6d33199
19cef65
 
 
 
 
6d33199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cef65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb04c6
 
6d33199
 
 
 
 
 
19cef65
908d003
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
import pandas as pd

from src.css_html import custom_css
from src.utils import (
    AutoEvalColumn,
    fields,
    make_clickable_names,
    make_plot_data
)
from src.demo import (
    generate,
    random_examples,
    return_ground_truth,
)


DEFAULT_SYSTEM_PROMPT = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 512


df = pd.read_csv("data/eval_board.csv")

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]


def add_new_eval(
    model: str,
    re2text_easy_precision: str,
    re2text_hard_precision: str,
    text2re_easy_precision: str,
    text2re_hard_precision: str,
    links: str,
):
    print("adding new eval")

    eval_entry = {
        "model": model,
        "re2text_easy": re2text_easy_precision,
        "re2text_hard": re2text_hard_precision,
        "text2re_easy": text2re_easy_precision,
        "text2re_hard": text2re_hard_precision,
        "link": links
    }



def select_columns(df, columns):
    always_here_cols = [
        AutoEvalColumn.model.name
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns]
    ]
    return filtered_df


df["pure_name"] = df['Models']
df = make_clickable_names(df)
demo = gr.Blocks(css=custom_css)

with demo:
    with gr.Row():
        gr.Markdown(
            """<div align= "center">
    <h1>🤖 ConvRe 🤯 <span style='color: #e6b800;'>  Leaderboard</span></h1>
</div>

""",
            elem_classes="markdown-text",
        )
    
    gr.Markdown("""🤖**ConvRe**🤯 is the benchmark proposed in our EMNLP 2023 main conference paper: [An Investigation of LLMs’ Inefficacy in Understanding Converse Relations](https://arxiv.org/abs/2310.05163).
It aims to evaluate LLMs' ability on understanding converse relations.
Converse relation is defined as the opposite of semantic relation while keeping the surface form of the triple unchanged.
For example, the triple `(x, has part, y)` is interpreted as "x has a part called y" in normal relation, while "y has a part called x" in converse relation 🔁.
                
The experiments in our paper suggested that LLMs often resort to shortcut learning (or superficial correlations) and still face challenges on our 🤖ConvRe🤯 benchmark even for powerful models like GPT-4.
                """, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🔢 Data", id=0):
            with gr.Accordion("➡️ See All Columns", open=False):
                shown_columns = gr.CheckboxGroup(
                    choices=[
                        c for c in COLS if c not in [AutoEvalColumn.model.name]
                    ],
                    value=[
                        c for c in COLS_LITE if c not in [AutoEvalColumn.model.name]
                    ],
                    label="",
                    elem_id="column-select",
                    interactive=True
            )
            leaderboard_df_re2text = gr.components.Dataframe(
                value=df[
                    [
                        AutoEvalColumn.model.name,
                    ] + shown_columns.value
                ],
                headers=[
                    AutoEvalColumn.model.name,
                ] + shown_columns.value,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
            )

            hidden_leaderboard_df_re2text = gr.components.DataFrame(
                value=df,
                headers=COLS,
                datatype=["str" for _ in range(len(COLS))],
                visible=False,
            )

            shown_columns.change(
                select_columns,
                [hidden_leaderboard_df_re2text, shown_columns],
                leaderboard_df_re2text
            )

        with gr.TabItem("📊 Plot", id=1):
            with gr.Row():
                with gr.Column():
                    gr.LinePlot(
                        make_plot_data(df, task="Re2Text"),
                        x="Setting",
                        y="Accuracy",
                        color="Symbol",
                        title="Re2Text",
                        y_lim=[0, 100],
                        x_label_angle=0,
                        height=400,
                        width=500,
                    )
            
                with gr.Column():
                    gr.LinePlot(
                        make_plot_data(df, task="Text2Re"),
                        x="Setting",
                        y="Accuracy",
                        color="Symbol",
                        title="Text2Re",
                        y_lim=[0, 100],
                        x_label_angle=0,
                        height=400,
                        width=500,
                    )

        with gr.TabItem("Submit results 🚀", id=3):
                    gr.Markdown("""<div align= "center">
    <h1>Comming Soon ❤️</span></h1>
</div>

""")

    with gr.Column():
        gr.Markdown(
            """<div style="text-align: center;"><h1> 🤖ConvRe🤯 Demo (Llama-2-Chat-7B🦙) </h1></div>\
            <br>\
            """,
            elem_classes="markdown-text",
        )

        output_box = gr.Textbox(lines=10, max_lines=10, label="Llama-2-Chat-7B Answer", interactive=False)

        input_box = gr.Textbox(lines=12, max_lines=12, label="User Input")

        ground_truth_display = gr.Textbox("", lines=1, max_lines=1, label="😊Correct Answer😊", interactive=False)
        
        with gr.Column():
            
            
            with gr.Accordion("Additional Inputs", open=False):
                sys_prompt = gr.Textbox(label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=6)
            
                max_new_tokens=gr.Slider(
                    label="Max new tokens",
                    minimum=1,
                    maximum=MAX_MAX_NEW_TOKENS,
                    step=1,
                    value=DEFAULT_MAX_NEW_TOKENS,
                )

                temperature = gr.Slider(
                    label="Temperature",
                    minimum=0.1,
                    maximum=4.0,
                    step=0.1,
                    value=0.1,
                )


        with gr.Row():
            re2text_easy_btn = gr.Button("Random Re2Text Easy Example 😄")
            re2text_easy_btn.click(
                fn=random_examples,
                inputs=gr.Text("re2text-easy", visible=False),
                outputs = input_box,
            )

            re2text_hard_btn = gr.Button("Random Re2Text Hard Example 🤯")
            re2text_hard_btn.click(
                fn=random_examples,
                inputs=gr.Text("re2text-hard", visible=False),
                outputs=input_box,
            )

            text2re_easy_btn = gr.Button("Random Text2Re Easy Example 😄")
            text2re_easy_btn.click(
                fn=random_examples,
                inputs=gr.Text("text2re-easy", visible=False),
                outputs = input_box,
            )

            text2re_hard_btn = gr.Button("Random Text2Re Hard Example 🤯")
            text2re_hard_btn.click(
                fn=random_examples,
                inputs=gr.Text("text2re-hard", visible=False),
                outputs = input_box,
            )

        with gr.Row():
            gr.ClearButton([input_box, output_box])
            submit_btn = gr.Button("Submit🏃")
            submit_btn.click(generate, inputs=[input_box, sys_prompt, temperature, max_new_tokens], outputs=[output_box])

            answer_btn = gr.Button("Answer🤔")
            answer_btn.click(return_ground_truth, inputs=[], outputs=[ground_truth_display])


demo.queue(max_size=32).launch()