Spaces:
Runtime error
Runtime error
File size: 1,245 Bytes
19cef65 56006e4 19cef65 56006e4 19cef65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
import random
from threading import Thread
from typing import Iterable
import torch
from huggingface_hub import HfApi
from datasets import load_dataset
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForCausalLM
TOKEN = os.environ.get("HF_TOKEN", None)
type2dataset = {
"re2text-easy": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt1"),
"re2text-hard": load_dataset('3B-Group/ConvRe', "en-re2text", token=TOKEN, split="prompt4"),
"text2re-easy": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt1"),
"text2re-hard": load_dataset('3B-Group/ConvRe', "en-text2re", token=TOKEN, split="prompt3")
}
model_id = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16)
# type2dataset = {}
def generate():
return "1"
def random_examples(dataset_key) -> str:
# target_dataset = type2dataset[f"{task.lower()}-{type.lower()}"]
target_dataset = type2dataset[dataset_key]
idx = random.randint(0, len(target_dataset) - 1)
item = target_dataset[idx]
return item['query']
|