MaxMilan1
commited on
Commit
·
86ea5fd
1
Parent(s):
d778d19
changeees
Browse files- app.py +24 -3
- util/text_img.py +20 -5
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
import os
|
3 |
|
4 |
from util.instantmesh import generate_mvs, make3d, preprocess, check_input_image
|
5 |
-
from util.text_img import
|
6 |
|
7 |
_CITE_ = r"""
|
8 |
```bibtex
|
@@ -24,6 +24,27 @@ theme = gr.themes.Soft(
|
|
24 |
|
25 |
|
26 |
with gr.Blocks(theme=theme) as GenDemo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
with gr.Tab("Text to Image Generator"):
|
28 |
with gr.Row(variant="panel"):
|
29 |
with gr.Column():
|
@@ -39,10 +60,10 @@ with gr.Blocks(theme=theme) as GenDemo:
|
|
39 |
cache_examples=False,
|
40 |
)
|
41 |
with gr.Column():
|
42 |
-
|
43 |
gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False)
|
44 |
|
45 |
-
|
46 |
|
47 |
with gr.Tab("Image to 3D Model Generator"):
|
48 |
with gr.Row(variant="panel"):
|
|
|
2 |
import os
|
3 |
|
4 |
from util.instantmesh import generate_mvs, make3d, preprocess, check_input_image
|
5 |
+
from util.text_img import generate_txttoimg, check_prompt, generate_imgtoimg
|
6 |
|
7 |
_CITE_ = r"""
|
8 |
```bibtex
|
|
|
24 |
|
25 |
|
26 |
with gr.Blocks(theme=theme) as GenDemo:
|
27 |
+
with gr.Tab("Image to Image Generator"):
|
28 |
+
button_choice = gr.Radio(label="Choose a model", choices=["Text to Image", "Image to Image"], default="Text to Image")
|
29 |
+
with gr.Row(variant="panel"):
|
30 |
+
with gr.Column():
|
31 |
+
prompt = gr.Textbox(label="Enter a discription of a shoe")
|
32 |
+
image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='pil')
|
33 |
+
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.5, step=0.1)
|
34 |
+
gr.Examples(
|
35 |
+
examples=[
|
36 |
+
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
37 |
+
],
|
38 |
+
inputs=[image],
|
39 |
+
label="Examples",
|
40 |
+
cache_examples=False,
|
41 |
+
)
|
42 |
+
with gr.Column():
|
43 |
+
button_img = gr.Button("Generate Image", elem_id="generateIm", variant="primary")
|
44 |
+
gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False)
|
45 |
+
|
46 |
+
button_img.click(check_prompt, inputs=[prompt]).success(generate_imgtoimg, inputs=[prompt, image, strength], outputs=[gen_image])
|
47 |
+
|
48 |
with gr.Tab("Text to Image Generator"):
|
49 |
with gr.Row(variant="panel"):
|
50 |
with gr.Column():
|
|
|
60 |
cache_examples=False,
|
61 |
)
|
62 |
with gr.Column():
|
63 |
+
button_txt = gr.Button("Generate Image", elem_id="generateIm", variant="primary")
|
64 |
gen_image = gr.Image(label="Generated Image", image_mode="RGBA", type='pil', show_download_button=True, show_label=False)
|
65 |
|
66 |
+
button_txt.click(check_prompt, inputs=[prompt]).success(generate_txttoimg, inputs=[prompt, controlNet_image, select], outputs=[gen_image])
|
67 |
|
68 |
with gr.Tab("Image to 3D Model Generator"):
|
69 |
with gr.Row(variant="panel"):
|
util/text_img.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import spaces
|
2 |
import rembg
|
3 |
import torch
|
4 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel,
|
5 |
import cv2
|
6 |
from transformers import pipeline
|
7 |
import numpy as np
|
@@ -14,6 +14,10 @@ import gradio as gr
|
|
14 |
def check_prompt(prompt):
|
15 |
if prompt is None:
|
16 |
raise gr.Error("Please enter a prompt!")
|
|
|
|
|
|
|
|
|
17 |
|
18 |
controlNet_normal = ControlNetModel.from_pretrained(
|
19 |
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
@@ -30,30 +34,41 @@ controlNet_MAP = {"Normal": controlNet_normal, "Depth": controlNet_depth}
|
|
30 |
|
31 |
# Function to generate an image from text using diffusion
|
32 |
@spaces.GPU
|
33 |
-
def
|
34 |
prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
|
35 |
|
36 |
-
|
37 |
"runwayml/stable-diffusion-v1-5",
|
38 |
controlnet=controlNet_MAP[controlnet],
|
39 |
torch_dtype=torch.float16,
|
40 |
safety_checker = None
|
41 |
)
|
42 |
|
43 |
-
|
44 |
|
45 |
if controlnet == "Normal":
|
46 |
control_image = get_normal(control_image)
|
47 |
elif controlnet == "Depth":
|
48 |
control_image = get_depth(control_image)
|
49 |
|
50 |
-
image =
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
image2 = rembg.remove(image)
|
53 |
|
54 |
return image2
|
55 |
|
56 |
|
|
|
57 |
def get_normal(image):
|
58 |
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
59 |
|
|
|
1 |
import spaces
|
2 |
import rembg
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoPipelineForImage2Image
|
5 |
import cv2
|
6 |
from transformers import pipeline
|
7 |
import numpy as np
|
|
|
14 |
def check_prompt(prompt):
|
15 |
if prompt is None:
|
16 |
raise gr.Error("Please enter a prompt!")
|
17 |
+
|
18 |
+
imagepipe = AutoPipelineForImage2Image.from_pretrained(
|
19 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
20 |
+
)
|
21 |
|
22 |
controlNet_normal = ControlNetModel.from_pretrained(
|
23 |
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
|
|
34 |
|
35 |
# Function to generate an image from text using diffusion
|
36 |
@spaces.GPU
|
37 |
+
def generate_txttoimg(prompt, control_image, controlnet):
|
38 |
prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
|
39 |
|
40 |
+
textpipe = StableDiffusionControlNetPipeline.from_pretrained(
|
41 |
"runwayml/stable-diffusion-v1-5",
|
42 |
controlnet=controlNet_MAP[controlnet],
|
43 |
torch_dtype=torch.float16,
|
44 |
safety_checker = None
|
45 |
)
|
46 |
|
47 |
+
textpipe.to("cuda")
|
48 |
|
49 |
if controlnet == "Normal":
|
50 |
control_image = get_normal(control_image)
|
51 |
elif controlnet == "Depth":
|
52 |
control_image = get_depth(control_image)
|
53 |
|
54 |
+
image = textpipe(prompt, image=control_image).images[0]
|
55 |
+
|
56 |
+
image2 = rembg.remove(image)
|
57 |
+
|
58 |
+
return image2
|
59 |
|
60 |
+
@spaces.GPU
|
61 |
+
def generate_imgtoimg(prompt, image, strength=0.5):
|
62 |
+
prompt += "no background, side view, minimalist shot, single shoe, no legs, product photo"
|
63 |
+
|
64 |
+
image = pipeline(prompt, image=image, strength=strength).images[0]
|
65 |
+
|
66 |
image2 = rembg.remove(image)
|
67 |
|
68 |
return image2
|
69 |
|
70 |
|
71 |
+
|
72 |
def get_normal(image):
|
73 |
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
74 |
|