File size: 6,653 Bytes
09339b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# TODO
import numpy as np
import argparse
import torch
from torchvision.utils import make_grid
import tempfile
import gradio as gr
from omegaconf import OmegaConf
from einops import rearrange
from scripts.pub.V3D_512 import (
    sample_one,
    get_batch,
    get_unique_embedder_keys_from_conditioner,
    load_model,
)
from sgm.util import default, instantiate_from_config
from safetensors.torch import load_file as load_safetensors
from PIL import Image
from kiui.op import recenter
from torchvision.transforms import ToTensor
from einops import rearrange, repeat
import rembg
import os
from glob import glob
from mediapy import write_video
from pathlib import Path


def generate_v3d(
    image,
    model,
    clip_model,
    ae_model,
    num_frames,
    num_steps,
    decoding_t,
    border_ratio,
    ignore_alpha,
    rembg_session,
    output_folder,
    min_cfg,
    max_cfg,
    device="cuda",
):
    change_model_params(model, min_cfg, max_cfg)
    # if image.mode == "RGBA":
    #     image = image.convert("RGB")
    image = Image.fromarray(image)
    w, h = image.size

    if border_ratio > 0:
        if image.mode != "RGBA" or ignore_alpha:
            image = image.convert("RGB")
            image = np.asarray(image)
            carved_image = rembg.remove(image, session=rembg_session)  # [H, W, 4]
        else:
            image = np.asarray(image)
            carved_image = image
        mask = carved_image[..., -1] > 0
        image = recenter(carved_image, mask, border_ratio=border_ratio)
        image = image.astype(np.float32) / 255.0
        if image.shape[-1] == 4:
            image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
        image = Image.fromarray((image * 255).astype(np.uint8))
    else:
        print("Ignore border ratio")
    image = image.resize((512, 512))

    image = ToTensor()(image)
    image = image * 2.0 - 1.0

    image = image.unsqueeze(0).to(device)
    H, W = image.shape[2:]
    assert image.shape[1] == 3
    F = 8
    C = 4
    shape = (num_frames, C, H // F, W // F)

    value_dict = {}
    value_dict["motion_bucket_id"] = 0
    value_dict["fps_id"] = 0
    value_dict["cond_aug"] = 0.05
    value_dict["cond_frames_without_noise"] = clip_model(image)
    value_dict["cond_frames"] = ae_model.encode(image)
    value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"])
    value_dict["cond_aug"] = 0.05

    with torch.no_grad():
        with torch.autocast(device):
            batch, batch_uc = get_batch(
                get_unique_embedder_keys_from_conditioner(model.conditioner),
                value_dict,
                [1, num_frames],
                T=num_frames,
                device=device,
            )
            c, uc = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc=batch_uc,
                force_uc_zero_embeddings=[
                    "cond_frames",
                    "cond_frames_without_noise",
                ],
            )

            for k in ["crossattn", "concat"]:
                uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

            randn = torch.randn(shape, device=device)
            randn = randn.to(device)

            additional_model_inputs = {}
            additional_model_inputs["image_only_indicator"] = torch.zeros(
                2, num_frames
            ).to(device)
            additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

            def denoiser(input, sigma, c):
                return model.denoiser(
                    model.model, input, sigma, c, **additional_model_inputs
                )

            samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
            model.en_and_decode_n_samples_a_time = decoding_t
            samples_x = model.decode_first_stage(samples_z)
            samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

            os.makedirs(output_folder, exist_ok=True)
            base_count = len(glob(os.path.join(output_folder, "*.mp4")))
            video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

            frames = (
                (rearrange(samples, "t c h w -> t h w c") * 255)
                .cpu()
                .numpy()
                .astype(np.uint8)
            )
            write_video(video_path, frames, fps=6)

    return video_path


def change_model_params(model, min_cfg, max_cfg):
    model.sampler.guider.max_scale = max_cfg
    model.sampler.guider.min_scale = min_cfg


def prep():
    model_config = "scripts/pub/configs/V3D_512.yaml"
    num_frames = OmegaConf.load(
        model_config
    ).model.params.sampler_config.params.guider_config.params.num_frames
    print("Detected num_frames:", num_frames)
    num_steps = 25
    output_folder = "outputs/V3D_512"
    device = "cuda"

    sd = load_safetensors("./ckpts/svd_xt.safetensors")
    clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml")
    clip_model = instantiate_from_config(clip_model_config).eval()
    clip_sd = dict()
    for k, v in sd.items():
        if "conditioner.embedders.0" in k:
            clip_sd[k.replace("conditioner.embedders.0.", "")] = v
    clip_model.load_state_dict(clip_sd)
    clip_model = clip_model.to(device)

    ae_model_config = OmegaConf.load("configs/ae/video.yaml")
    ae_model = instantiate_from_config(ae_model_config).eval()
    encoder_sd = dict()
    for k, v in sd.items():
        if "first_stage_model" in k:
            encoder_sd[k.replace("first_stage_model.", "")] = v
    ae_model.load_state_dict(encoder_sd)
    ae_model = ae_model.to(device)
    rembg_session = rembg.new_session()

    model, _ = load_model(
        model_config, device, num_frames, num_steps, min_cfg=3.5, max_cfg=3.5
    )
       
    def download_if_need(path, url):
        if Path(path).exists():
            return
        import wget

        path.parent.mkdir(parents=True, exist_ok=True)
        wget.download(url, out=str(path))

    download_if_need(
        "ckpts/svd_xt.safetensors",
        "https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/resolve/main/svd_xt.safetensors -O ckpts/svd_xt.safetensors",
    )
    download_if_need(
        "ckpts/V3D_512.ckpt", "https://huggingface.co/heheyas/V3D/resolve/main/V3D.ckpt"
    )

    return model, clip_model, ae_model, num_frames, num_steps, rembg_session, device