Spaces:
Runtime error
Runtime error
File size: 1,396 Bytes
07879c1 0bea55f 07879c1 2c3abf7 0bea55f 07879c1 dc685c3 07879c1 dc685c3 07879c1 dc685c3 07879c1 dc685c3 07879c1 dc685c3 07879c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
@st.cache(allow_output_mutation=True)
def load_model():
'''
Loads the model and tokenizer from the local directory.
:return: A list containing the model and the tokenizer.
'''
model_name = 'facebook/incoder-1B'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
return [model, tokenizer]
st.set_page_config(
page_title="Incoder Example",
page_icon="π¨βπ»",
)
st.markdown("# π¨βπ» Incoder Example")
txt = st.text_area('Write code here', '''import os
def remove_file(file):''', height=400)
gen = st.button('Generate')
c = st.code('')
max_length = st.slider('max_length', 1, 2048, 128)
top_k = st.slider('top_k', 0, 100, 50)
top_p = st.slider('top_p', 0.0, 1.0, 0.9)
temperature = st.slider('temperature', 0.0, 1.0, 0.6)
num_beams = st.slider('num_beams', 1, 100, 0)
repetition_penalty = st.slider('repetition_penalty', 1.0, 10.0, 1.0)
if gen:
c.code('Generating...')
m = load_model()
inpt = m[1].encode(txt, return_tensors="pt")
out = m[0].generate(inpt, max_length=max_length, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=num_beams, repetition_penalty=repetition_penalty)
res = m[1].decode(out[0])
print('ok')
c.code(res) |