Spaces:
Sleeping
Sleeping
import html | |
import os | |
import time | |
import torch | |
import transformers | |
import gradio as gr | |
class FormComponent: | |
def get_expected_parent(self): | |
return gr.components.Form | |
class FormRow(FormComponent, gr.Row): | |
"""Same as gr.Row but fits inside gradio forms""" | |
def get_block_name(self): | |
return "row" | |
def wrap_gradio_gpu_call(func, extra_outputs=None): | |
def f(*args, **kwargs): | |
res = func(*args, **kwargs) | |
return res | |
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True) | |
class Model: | |
name = None | |
model = None | |
tokenizer = None | |
available_models = ["0Tick/e621TagAutocomplete","0Tick/danbooruTagAutocomplete"] | |
current = Model() | |
job_count = 1 | |
def device(): | |
return torch.device("cpu") | |
def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p): | |
top_p = float(top_p) if sampling_mode == 'Top P' else None | |
top_k = int(top_k) if sampling_mode == 'Top K' else None | |
outputs = current.model.generate( | |
input_ids, | |
do_sample=True, | |
temperature=max(float(temperature), 1e-6), | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
top_p=top_p, | |
top_k=top_k, | |
num_beams=int(num_beams), | |
min_length=min_length, | |
max_length=max_length, | |
pad_token_id=current.tokenizer.pad_token_id or current.tokenizer.eos_token_id | |
) | |
texts = current.tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return texts | |
def model_selection_changed(model_name): | |
if model_name == "None": | |
current.tokenizer = None | |
current.model = None | |
current.name = None | |
devices.torch_gc() | |
def generate(id_task, model_name, batch_count, batch_size, text, *args): | |
job_count = batch_count | |
print(f"Model:{model_name},Count:{batch_count*batch_size},StartingText:{text}") | |
if current.name != model_name: | |
current.tokenizer = None | |
current.model = None | |
current.name = None | |
if model_name != 'None': | |
path = model_name | |
current.tokenizer = transformers.AutoTokenizer.from_pretrained(path) | |
current.model = transformers.AutoModelForCausalLM.from_pretrained(path) | |
current.name = model_name | |
assert current.model, 'No model available' | |
assert current.tokenizer, 'No tokenizer available' | |
current.model.to(device()) | |
input_ids = current.tokenizer(text, return_tensors="pt").input_ids | |
if input_ids.shape[1] == 0: | |
input_ids = torch.asarray([[current.tokenizer.bos_token_id]], dtype=torch.long) | |
input_ids = input_ids.to(device()) | |
input_ids = input_ids.repeat((batch_size, 1)) | |
markup = '<table><tbody>' | |
index = 0 | |
for i in range(batch_count): | |
texts = generate_batch(input_ids, *args) | |
for generated_text in texts: | |
index += 1 | |
markup += f""" | |
<tr> | |
<td> | |
<div class="prompt gr-box gr-text-input"> | |
<p id='promptgen_res_{index}'>{html.escape(generated_text)}</p> | |
</div> | |
</td> | |
</tr> | |
""" | |
markup += '</tbody></table>' | |
return markup, '' | |
with gr.Blocks(analytics_enabled=False) as space: | |
with gr.Row(): | |
with gr.Column(scale=80): | |
prompt = gr.Textbox(label="Prompt", elem_id="promptgen_prompt", show_label=False, lines=2, placeholder="Beginning of the prompt")#.style(container=False) | |
with gr.Column(scale=10): | |
submit = gr.Button('Generate', elem_id="promptgen_generate", variant='primary') | |
with gr.Row(elem_id="promptgen_main"): | |
with gr.Column(variant="compact"): | |
selected_text = gr.TextArea(elem_id='promptgen_selected_text', visible=False) | |
with FormRow(): | |
model_selection = gr.Dropdown(label="Model", elem_id="promptgen_model", value=available_models[0], choices=["None"] + available_models) | |
with FormRow(): | |
sampling_mode = gr.Radio(label="Sampling mode", elem_id="promptgen_sampling_mode", value="Top K", choices=["Top K", "Top P"]) | |
top_k = gr.Slider(label="Top K", elem_id="promptgen_top_k", value=12, minimum=1, maximum=50, step=1) | |
top_p = gr.Slider(label="Top P", elem_id="promptgen_top_p", value=0.15, minimum=0, maximum=1, step=0.001) | |
with gr.Row(): | |
num_beams = gr.Slider(label="Number of beams", elem_id="promptgen_num_beams", value=1, minimum=1, maximum=8, step=1) | |
temperature = gr.Slider(label="Temperature", elem_id="promptgen_temperature", value=1, minimum=0, maximum=4, step=0.01) | |
repetition_penalty = gr.Slider(label="Repetition penalty", elem_id="promptgen_repetition_penalty", value=1, minimum=1, maximum=4, step=0.01) | |
with FormRow(): | |
length_penalty = gr.Slider(label="Length preference", elem_id="promptgen_length_preference", value=1, minimum=-10, maximum=10, step=0.1) | |
min_length = gr.Slider(label="Min length", elem_id="promptgen_min_length", value=20, minimum=1, maximum=400, step=1) | |
max_length = gr.Slider(label="Max length", elem_id="promptgen_max_length", value=150, minimum=1, maximum=400, step=1) | |
with FormRow(): | |
batch_count = gr.Slider(label="Batch count", elem_id="promptgen_batch_count", value=1, minimum=1, maximum=100, step=1) | |
batch_size = gr.Slider(label="Batch size", elem_id="promptgen_batch_size", value=10, minimum=1, maximum=100, step=1) | |
with gr.Column(): | |
with gr.Group(elem_id="promptgen_results_column"): | |
res = gr.HTML() | |
res_info = gr.HTML() | |
submit.click( | |
fn=generate, | |
inputs=[model_selection, model_selection, batch_count, batch_size, prompt, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p, ], | |
outputs=[res, res_info] | |
) | |
model_selection.change( | |
fn=model_selection_changed, | |
inputs=[model_selection], | |
outputs=[], | |
) | |
space.launch() |