File size: 2,753 Bytes
230653e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
from transformers import BartTokenizer, BartForConditionalGeneration

# Initialize tokenizers and models for both healthcare and AI
healthcare_model_name = 'facebook/bart-large-cnn'
ai_model_name = 'facebook/bart-large-xsum'

healthcare_tokenizer = BartTokenizer.from_pretrained(healthcare_model_name)
ai_tokenizer = BartTokenizer.from_pretrained(ai_model_name)

healthcare_model = BartForConditionalGeneration.from_pretrained(healthcare_model_name)
ai_model = BartForConditionalGeneration.from_pretrained(ai_model_name)

# Summarization function
def generate_summary(text, tokenizer, model):
    inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True, padding="max_length")
    with torch.no_grad():
        outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Functions for each agent
def healthcare_agent(abstract):
    return generate_summary(abstract, healthcare_tokenizer, healthcare_model)

def ai_agent(abstract):
    return generate_summary(abstract, ai_tokenizer, ai_model)

# Function to generate implications based on both agents' insights
def generate_implications(healthcare_summary, ai_summary):
    healthcare_implication = f"Healthcare Implications: {healthcare_summary} The healthcare sector can leverage these findings to improve patient care and treatment outcomes."
    ai_implication = f"AI Implications: {ai_summary} These insights can further enhance AI models, making them more applicable in real-world healthcare scenarios."
    combined_implications = f"{healthcare_implication}\n\n{ai_implication}"
    return combined_implications

# Gradio Interface function
def summarize_and_generate_implications(abstract):
    healthcare_summary = healthcare_agent(abstract)
    ai_summary = ai_agent(abstract)
    implications = generate_implications(healthcare_summary, ai_summary)
    return healthcare_summary, ai_summary, implications

# Creating the Gradio interface
interface = gr.Interface(
    fn=summarize_and_generate_implications, 
    inputs=gr.Textbox(label="Abstract", placeholder="Enter the abstract of a research paper..."), 
    outputs=[
        gr.Textbox(label="Healthcare Summary"), 
        gr.Textbox(label="AI Summary"),
        gr.Textbox(label="Implications")
    ],
    live=True,
    title="Research Paper Summarization and Implications",
    description="This app generates summaries for healthcare and AI domains and provides implications for each."
)

# Launch the Gradio interface
interface.launch(share=True)  # share=True will generate a public link