leaderboard-pr-bot commited on
Commit
1b7fb5b
·
verified ·
1 Parent(s): f6062ca

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +113 -5
README.md CHANGED
@@ -1,12 +1,107 @@
1
  ---
2
- base_model:
3
- - sophosympatheia/Midnight-Miqu-70B-v1.0
4
- - migtissera/Tess-70B-v1.6
5
  library_name: transformers
6
  tags:
7
  - mergekit
8
  - merge
9
- license: other
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <div style="width: auto; margin-left: auto; margin-right: auto">
@@ -219,4 +314,17 @@ dtype: float16
219
  ### Notes
220
 
221
  I tried several methods of merging Midnight Miqu v1.0 with Tess v1.6, and this dare_linear approach worked the best by far. I tried the same approach with other Miqu finetunes like ShinojiResearch/Senku-70B-Full and abideen/Liberated-Miqu-70B, but there was a huge difference in performance. The merge with Tess was the best one.
222
- I also tried the SLERP approach I used to create Midnight Miqu v1.0, only using Tess instead of 152334H_miqu-1-70b in that config, and that result was nowhere near as good either.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: other
 
 
3
  library_name: transformers
4
  tags:
5
  - mergekit
6
  - merge
7
+ base_model:
8
+ - sophosympatheia/Midnight-Miqu-70B-v1.0
9
+ - migtissera/Tess-70B-v1.6
10
+ model-index:
11
+ - name: Midnight-Miqu-70B-v1.5
12
+ results:
13
+ - task:
14
+ type: text-generation
15
+ name: Text Generation
16
+ dataset:
17
+ name: IFEval (0-Shot)
18
+ type: HuggingFaceH4/ifeval
19
+ args:
20
+ num_few_shot: 0
21
+ metrics:
22
+ - type: inst_level_strict_acc and prompt_level_strict_acc
23
+ value: 61.18
24
+ name: strict accuracy
25
+ source:
26
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
27
+ name: Open LLM Leaderboard
28
+ - task:
29
+ type: text-generation
30
+ name: Text Generation
31
+ dataset:
32
+ name: BBH (3-Shot)
33
+ type: BBH
34
+ args:
35
+ num_few_shot: 3
36
+ metrics:
37
+ - type: acc_norm
38
+ value: 38.54
39
+ name: normalized accuracy
40
+ source:
41
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
42
+ name: Open LLM Leaderboard
43
+ - task:
44
+ type: text-generation
45
+ name: Text Generation
46
+ dataset:
47
+ name: MATH Lvl 5 (4-Shot)
48
+ type: hendrycks/competition_math
49
+ args:
50
+ num_few_shot: 4
51
+ metrics:
52
+ - type: exact_match
53
+ value: 2.42
54
+ name: exact match
55
+ source:
56
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
57
+ name: Open LLM Leaderboard
58
+ - task:
59
+ type: text-generation
60
+ name: Text Generation
61
+ dataset:
62
+ name: GPQA (0-shot)
63
+ type: Idavidrein/gpqa
64
+ args:
65
+ num_few_shot: 0
66
+ metrics:
67
+ - type: acc_norm
68
+ value: 6.15
69
+ name: acc_norm
70
+ source:
71
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
72
+ name: Open LLM Leaderboard
73
+ - task:
74
+ type: text-generation
75
+ name: Text Generation
76
+ dataset:
77
+ name: MuSR (0-shot)
78
+ type: TAUR-Lab/MuSR
79
+ args:
80
+ num_few_shot: 0
81
+ metrics:
82
+ - type: acc_norm
83
+ value: 11.65
84
+ name: acc_norm
85
+ source:
86
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
87
+ name: Open LLM Leaderboard
88
+ - task:
89
+ type: text-generation
90
+ name: Text Generation
91
+ dataset:
92
+ name: MMLU-PRO (5-shot)
93
+ type: TIGER-Lab/MMLU-Pro
94
+ config: main
95
+ split: test
96
+ args:
97
+ num_few_shot: 5
98
+ metrics:
99
+ - type: acc
100
+ value: 31.39
101
+ name: accuracy
102
+ source:
103
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sophosympatheia/Midnight-Miqu-70B-v1.5
104
+ name: Open LLM Leaderboard
105
  ---
106
 
107
  <div style="width: auto; margin-left: auto; margin-right: auto">
 
314
  ### Notes
315
 
316
  I tried several methods of merging Midnight Miqu v1.0 with Tess v1.6, and this dare_linear approach worked the best by far. I tried the same approach with other Miqu finetunes like ShinojiResearch/Senku-70B-Full and abideen/Liberated-Miqu-70B, but there was a huge difference in performance. The merge with Tess was the best one.
317
+ I also tried the SLERP approach I used to create Midnight Miqu v1.0, only using Tess instead of 152334H_miqu-1-70b in that config, and that result was nowhere near as good either.
318
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
319
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sophosympatheia__Midnight-Miqu-70B-v1.5)
320
+
321
+ | Metric |Value|
322
+ |-------------------|----:|
323
+ |Avg. |25.22|
324
+ |IFEval (0-Shot) |61.18|
325
+ |BBH (3-Shot) |38.54|
326
+ |MATH Lvl 5 (4-Shot)| 2.42|
327
+ |GPQA (0-shot) | 6.15|
328
+ |MuSR (0-shot) |11.65|
329
+ |MMLU-PRO (5-shot) |31.39|
330
+