Upload model
Browse files- model.safetensors +1 -1
- modeling_phylogpn.py +34 -19
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 332799280
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f05a93d49be782d608ddaddd3ed056077922e26890d7acd53b35ad8e7fe540
|
3 |
size 332799280
|
modeling_phylogpn.py
CHANGED
@@ -31,12 +31,20 @@ class RCEWeight(nn.Module):
|
|
31 |
)
|
32 |
|
33 |
super().__init__()
|
34 |
-
self.
|
35 |
-
self.
|
|
|
|
|
|
|
36 |
|
37 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
return (x + x[output_involution_indices][:, input_involution_indices].flip(2)) / 2
|
41 |
|
42 |
|
@@ -46,10 +54,16 @@ class IEBias(nn.Module):
|
|
46 |
raise ValueError("`involution_indices` must be an involution")
|
47 |
|
48 |
super().__init__()
|
49 |
-
self.
|
|
|
|
|
50 |
|
51 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
return (x + x[involution_indices]) / 2
|
54 |
|
55 |
|
@@ -64,23 +78,25 @@ class IEWeight(nn.Module):
|
|
64 |
)
|
65 |
|
66 |
super().__init__()
|
67 |
-
self.
|
68 |
-
self.
|
|
|
|
|
|
|
69 |
|
70 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
return (x + x[input_involution_indices][:, output_involution_indices]) / 2
|
74 |
-
|
75 |
|
76 |
class RCEByteNetBlock(nn.Module):
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
outer_involution_indices: List[int],
|
80 |
-
inner_dim: int,
|
81 |
-
kernel_size: int,
|
82 |
-
dilation_rate: int = 1
|
83 |
-
):
|
84 |
outer_dim = len(outer_involution_indices)
|
85 |
|
86 |
if outer_dim % 2 != 0:
|
@@ -130,7 +146,6 @@ class RCEByteNetBlock(nn.Module):
|
|
130 |
layers[8], "bias",
|
131 |
IEBias(outer_involution_indices)
|
132 |
)
|
133 |
-
|
134 |
self.layers = nn.Sequential(*layers)
|
135 |
self._kernel_size = kernel_size
|
136 |
self._dilation_rate = dilation_rate
|
|
|
31 |
)
|
32 |
|
33 |
super().__init__()
|
34 |
+
self._input_involution_indices = input_involution_indices
|
35 |
+
self._output_involution_indices = output_involution_indices
|
36 |
+
self._input_involution_index_tensor = None
|
37 |
+
self._output_involution_index_tensor = None
|
38 |
+
self._device = None
|
39 |
|
40 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
41 |
+
if self._device != x.device:
|
42 |
+
self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
|
43 |
+
self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
|
44 |
+
self._device = x.device
|
45 |
+
|
46 |
+
output_involution_indices = self._output_involution_index_tensor
|
47 |
+
input_involution_indices = self._input_involution_index_tensor
|
48 |
return (x + x[output_involution_indices][:, input_involution_indices].flip(2)) / 2
|
49 |
|
50 |
|
|
|
54 |
raise ValueError("`involution_indices` must be an involution")
|
55 |
|
56 |
super().__init__()
|
57 |
+
self._involution_indices = involution_indices
|
58 |
+
self._involution_index_tensor = None
|
59 |
+
self._device = None
|
60 |
|
61 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
62 |
+
if self._device != x.device:
|
63 |
+
self._involution_index_tensor = torch.tensor(self._involution_indices, device=x.device)
|
64 |
+
self._device = x.device
|
65 |
+
|
66 |
+
involution_indices = self._involution_index_tensor
|
67 |
return (x + x[involution_indices]) / 2
|
68 |
|
69 |
|
|
|
78 |
)
|
79 |
|
80 |
super().__init__()
|
81 |
+
self._input_involution_indices = input_involution_indices
|
82 |
+
self._output_involution_indices = output_involution_indices
|
83 |
+
self._input_involution_index_tensor = None
|
84 |
+
self._output_involution_index_tensor = None
|
85 |
+
self._device = None
|
86 |
|
87 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
88 |
+
if self._device != x.device:
|
89 |
+
self._input_involution_index_tensor = torch.tensor(self._input_involution_indices, device=x.device)
|
90 |
+
self._output_involution_index_tensor = torch.tensor(self._output_involution_indices, device=x.device)
|
91 |
+
self._device = x.device
|
92 |
+
|
93 |
+
output_involution_indices = self._output_involution_index_tensor
|
94 |
+
input_involution_indices = self._input_involution_index_tensor
|
95 |
return (x + x[input_involution_indices][:, output_involution_indices]) / 2
|
96 |
+
|
97 |
|
98 |
class RCEByteNetBlock(nn.Module):
|
99 |
+
def __init__(self, outer_involution_indices: List[int], inner_dim: int, kernel_size: int, dilation_rate: int = 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
outer_dim = len(outer_involution_indices)
|
101 |
|
102 |
if outer_dim % 2 != 0:
|
|
|
146 |
layers[8], "bias",
|
147 |
IEBias(outer_involution_indices)
|
148 |
)
|
|
|
149 |
self.layers = nn.Sequential(*layers)
|
150 |
self._kernel_size = kernel_size
|
151 |
self._dilation_rate = dilation_rate
|