File size: 1,253 Bytes
9dfb713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7456626
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
language:
- es
- qu
tags:
- quechua
- translation
- spanish
license: apache-2.0
---

# t5-small-finetuned-spanish-to-quechua

This model is a finetuned version of the [t5-small](https://huggingface.co/t5-small).

## Model description



## Intended uses & limitations



### How to use

You can import this model as follows:

```python
>>> from transformers import AutoModelForSeq2SeqLM
>>> from transformers import AutoTokenizer
>>> model_name = 'hackathon-pln-es/t5-small-finetuned-spanish-to-quechua'
>>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```

To translate you can do:

```python
>>> sentence = "Entonces dijo"
>>> input = tokenizer(text, return_tensors="pt")
>>> output = model.generate(input["input_ids"], max_length=40, num_beams=4, early_stopping=True)
>>> print('Original Sentence: {} \nTranslated sentence: {}'.format(sentence, tokenizer.decode(output[0])))
```

### Limitations and bias



## Training data



## Evaluation results

We obtained the following metrics during the training process:

- eval_bleu = 2.9691
- eval_loss = 1.2064628601074219

## Team

- [Sara Benel](https://huggingface.co/sbenel)
- [Jose Vílchez](https://huggingface.co/JCarlos)