File size: 6,046 Bytes
0d43f37 11795dc b1514b8 11795dc b1514b8 0d43f37 11795dc b1514b8 0d43f37 11795dc b1514b8 11795dc b1514b8 0d43f37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
license: apache-2.0
library_name: transformers
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_15-7B-slerp
- SanjiWatsuki/Kunoichi-7B
pipeline_tag: text-generation
inference: false
base_model:
- Gille/StrangeMerges_15-7B-slerp
- SanjiWatsuki/Kunoichi-7B
model-index:
- name: StrangeMerges_16-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.65
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_16-7B-slerp
name: Open LLM Leaderboard
quantized_by: Suparious
---
# Gille/StrangeMerges_16-7B-slerp AWQ
- Model creator: [Gille](https://huggingface.co/Gille)
- Original model: [StrangeMerges_16-7B-slerp](https://huggingface.co/Gille/StrangeMerges_16-7B-slerp)
## Model Summary
StrangeMerges_16-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_15-7B-slerp](https://huggingface.co/Gille/StrangeMerges_15-7B-slerp)
* [SanjiWatsuki/Kunoichi-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-7B)
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/StrangeMerges_16-7B-slerp-AWQ"
system_message = "You are StrangeMerges_16-7B-slerp, incarnated as a powerful AI. You were created by Gille."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|