viethoangtranduong
commited on
Commit
·
85e6e1b
1
Parent(s):
774805b
Update handler.py
Browse files- handler.py +81 -13
handler.py
CHANGED
@@ -40,14 +40,71 @@
|
|
40 |
|
41 |
# return {"generated_text": output_strs}
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
import torch
|
|
|
44 |
from typing import Dict, List, Any
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
class EndpointHandler():
|
48 |
def __init__(self, path: str = ""):
|
49 |
|
50 |
self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left")
|
|
|
51 |
self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16)
|
52 |
|
53 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
@@ -65,19 +122,30 @@ class EndpointHandler():
|
|
65 |
|
66 |
prompts = [f"<human>: {prompt}\n<bot>:" for prompt in inputs_list]
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
output_strs = self.tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
|
|
|
82 |
|
83 |
return {"generated_text": output_strs}
|
|
|
40 |
|
41 |
# return {"generated_text": output_strs}
|
42 |
|
43 |
+
# import torch
|
44 |
+
# from typing import Dict, List, Any
|
45 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
46 |
+
|
47 |
+
# class EndpointHandler():
|
48 |
+
# def __init__(self, path: str = ""):
|
49 |
+
|
50 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left")
|
51 |
+
# self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16)
|
52 |
+
|
53 |
+
# def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
54 |
+
# """
|
55 |
+
# Args:
|
56 |
+
# data (:obj:):
|
57 |
+
# includes the input data and the parameters for the inference.
|
58 |
+
# Return:
|
59 |
+
# A :obj:`list`:. The list contains the answer and scores of the inference inputs
|
60 |
+
# """
|
61 |
+
|
62 |
+
# # process input
|
63 |
+
# inputs_list = data.pop("inputs", data)
|
64 |
+
# parameters = data.pop("parameters", {})
|
65 |
+
|
66 |
+
# prompts = [f"<human>: {prompt}\n<bot>:" for prompt in inputs_list]
|
67 |
+
|
68 |
+
# self.tokenizer.pad_token = self.tokenizer.eos_token
|
69 |
+
|
70 |
+
# inputs = self.tokenizer(prompts, truncation=True, max_length=2048-512,
|
71 |
+
# return_tensors='pt', padding=True).to(self.model.device)
|
72 |
+
# input_length = inputs.input_ids.shape[1]
|
73 |
+
|
74 |
+
# if parameters.get("deterministic", False):
|
75 |
+
# torch.manual_seed(42)
|
76 |
+
|
77 |
+
# outputs = self.model.generate(
|
78 |
+
# **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.7, top_k=50
|
79 |
+
# )
|
80 |
+
|
81 |
+
# output_strs = self.tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
|
82 |
+
|
83 |
+
# return {"generated_text": output_strs}
|
84 |
+
|
85 |
import torch
|
86 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
|
87 |
from typing import Dict, List, Any
|
88 |
+
|
89 |
+
class StopWordsCriteria(StoppingCriteria):
|
90 |
+
def __init__(self, stop_words, tokenizer):
|
91 |
+
self.tokenizer = tokenizer
|
92 |
+
self.stop_words = stop_words
|
93 |
+
self._cache_str = ''
|
94 |
+
|
95 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
96 |
+
self._cache_str += self.tokenizer.decode(input_ids[0, -1])
|
97 |
+
for stop_words in self.stop_words:
|
98 |
+
if stop_words in self._cache_str:
|
99 |
+
return True
|
100 |
+
return False
|
101 |
+
|
102 |
|
103 |
class EndpointHandler():
|
104 |
def __init__(self, path: str = ""):
|
105 |
|
106 |
self.tokenizer = AutoTokenizer.from_pretrained(path, padding_side = "left")
|
107 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
108 |
self.model = AutoModelForCausalLM.from_pretrained(path, device_map = "auto", torch_dtype=torch.float16)
|
109 |
|
110 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
122 |
|
123 |
prompts = [f"<human>: {prompt}\n<bot>:" for prompt in inputs_list]
|
124 |
|
125 |
+
if parameters.get("preset_truncation_token"):
|
126 |
+
preset_truncation_token_value = parameters["preset_truncation_token"]
|
127 |
+
DELIMETER = " "
|
128 |
+
prompts = [DELIMETER.join(prompt.split(DELIMETER)[:preset_truncation_token_value]) for prompt in prompts]
|
129 |
+
print("45", prompts)
|
130 |
+
del parameters["preset_truncation_token"]
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
inputs = self.tokenizer(prompts, truncation=True, max_length=2048-512,
|
134 |
+
return_tensors='pt', padding=True).to(self.model.device)
|
135 |
+
input_length = inputs.input_ids.shape[1]
|
136 |
+
|
137 |
+
if parameters.get("deterministic_seed", False):
|
138 |
+
torch.manual_seed(parameters["deterministic_seed"])
|
139 |
+
del parameters["deterministic_seed"]
|
140 |
+
|
141 |
+
outputs = self.model.generate(
|
142 |
+
**inputs, **parameters,
|
143 |
+
stopping_criteria=StoppingCriteriaList(
|
144 |
+
[StopWordsCriteria(['\n<human>:'], self.tokenizer)]
|
145 |
+
)
|
146 |
+
)
|
147 |
|
148 |
output_strs = self.tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)
|
149 |
+
output_strs = [output_str.replace("\n<human>:", "") for output_str in output_strs]
|
150 |
|
151 |
return {"generated_text": output_strs}
|