utkarsh2299
commited on
Upload text_preprocess_for_inference.py
Browse files- text_preprocess_for_inference.py +979 -0
text_preprocess_for_inference.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
TTS Preprocessing
|
3 |
+
Developed by Arun Kumar A(CS20S013) - November 2022
|
4 |
+
Code Changes by Utkarsh - 2023
|
5 |
+
'''
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import json
|
9 |
+
import pandas as pd
|
10 |
+
import string
|
11 |
+
from collections import defaultdict
|
12 |
+
import time
|
13 |
+
import subprocess
|
14 |
+
import shutil
|
15 |
+
from multiprocessing import Process
|
16 |
+
import traceback
|
17 |
+
|
18 |
+
#imports of dependencies from environment.yml
|
19 |
+
from num_to_words import num_to_word
|
20 |
+
from g2p_en import G2p
|
21 |
+
|
22 |
+
def add_to_dictionary(dict_to_add, dict_file):
|
23 |
+
append_string = ""
|
24 |
+
for key, value in dict_to_add.items():
|
25 |
+
append_string += (str(key) + " " + str(value) + "\n")
|
26 |
+
|
27 |
+
if os.path.isfile(dict_file):
|
28 |
+
# make a copy of the dictionary
|
29 |
+
source_dir = os.path.dirname(dict_file)
|
30 |
+
dict_file_name = os.path.basename(dict_file)
|
31 |
+
temp_file_name = "." + dict_file_name + ".temp"
|
32 |
+
temp_dict_file = os.path.join(source_dir, temp_file_name)
|
33 |
+
shutil.copy(dict_file, temp_dict_file)
|
34 |
+
# append the new words in the dictionary to the temp file
|
35 |
+
with open(temp_dict_file, "a") as f:
|
36 |
+
f.write(append_string)
|
37 |
+
# check if the write is successful and then replace the temp file as the dict file
|
38 |
+
try:
|
39 |
+
df_orig = pd.read_csv(dict_file, delimiter=" ", header=None, dtype=str)
|
40 |
+
df_temp = pd.read_csv(temp_dict_file, delimiter=" ", header=None, dtype=str)
|
41 |
+
if len(df_temp) > len(df_orig):
|
42 |
+
os.rename(temp_dict_file, dict_file)
|
43 |
+
print(f"{len(dict_to_add)} new words appended to Dictionary: {dict_file}")
|
44 |
+
except:
|
45 |
+
print(traceback.format_exc())
|
46 |
+
else:
|
47 |
+
# create a new dictionary
|
48 |
+
with open(dict_file, "a") as f:
|
49 |
+
f.write(append_string)
|
50 |
+
print(f"New Dictionary: {dict_file} created with {len(dict_to_add)} words")
|
51 |
+
|
52 |
+
|
53 |
+
class TextCleaner:
|
54 |
+
def __init__(self):
|
55 |
+
# this is a static set of cleaning rules to be applied
|
56 |
+
self.cleaning_rules = {
|
57 |
+
" +" : " ",
|
58 |
+
"^ +" : "",
|
59 |
+
" +$" : "",
|
60 |
+
"#" : "",
|
61 |
+
"[.,;।!](\r\n)*" : "# ",
|
62 |
+
"[.,;।!](\n)*" : "# ",
|
63 |
+
"(\r\n)+" : "# ",
|
64 |
+
"(\n)+" : "# ",
|
65 |
+
"(\r)+" : "# ",
|
66 |
+
"""[?;:)(!|&’‘,।\."]""": "",
|
67 |
+
"[/']" : "",
|
68 |
+
"[-–]" : " ",
|
69 |
+
}
|
70 |
+
|
71 |
+
def clean(self, text):
|
72 |
+
for key, replacement in self.cleaning_rules.items():
|
73 |
+
text = re.sub(key, replacement, text)
|
74 |
+
return text
|
75 |
+
|
76 |
+
def clean_list(self, text):
|
77 |
+
# input is supposed to be a list of strings
|
78 |
+
output_text = []
|
79 |
+
for line in text:
|
80 |
+
line = line.strip()
|
81 |
+
for key, replacement in self.cleaning_rules.items():
|
82 |
+
line = re.sub(key, replacement, line)
|
83 |
+
output_text.append(line)
|
84 |
+
return output_text
|
85 |
+
|
86 |
+
|
87 |
+
class Phonifier:
|
88 |
+
def __init__(self, dict_location=None):
|
89 |
+
if dict_location is None:
|
90 |
+
dict_location = "phone_dict"
|
91 |
+
self.dict_location = dict_location
|
92 |
+
|
93 |
+
# self.phone_dictionary = {}
|
94 |
+
# # load dictionary for all the available languages
|
95 |
+
# for dict_file in os.listdir(dict_location):
|
96 |
+
# try:
|
97 |
+
# if dict_file.startswith("."):
|
98 |
+
# # ignore hidden files
|
99 |
+
# continue
|
100 |
+
# language = dict_file
|
101 |
+
# dict_file_path = os.path.join(dict_location, dict_file)
|
102 |
+
# df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
|
103 |
+
# self.phone_dictionary[language] = df.set_index(0).to_dict('dict')[1]
|
104 |
+
# except Exception as e:
|
105 |
+
# print(traceback.format_exc())
|
106 |
+
|
107 |
+
# print("Phone dictionary loaded for the following languages:", list(self.phone_dictionary.keys()))
|
108 |
+
|
109 |
+
self.g2p = G2p()
|
110 |
+
print('Loading G2P model... Done!')
|
111 |
+
# Mapping between the cmu phones and the iitm cls
|
112 |
+
self.cmu_2_cls_map = {
|
113 |
+
"AA" : "aa",
|
114 |
+
"AA0" : "aa",
|
115 |
+
"AA1" : "aa",
|
116 |
+
"AA2" : "aa",
|
117 |
+
"AE" : "axx",
|
118 |
+
"AE0" : "axx",
|
119 |
+
"AE1" : "axx",
|
120 |
+
"AE2" : "axx",
|
121 |
+
"AH" : "a",
|
122 |
+
"AH0" : "a",
|
123 |
+
"AH1" : "a",
|
124 |
+
"AH2" : "a",
|
125 |
+
"AO" : "ax",
|
126 |
+
"AO0" : "ax",
|
127 |
+
"AO1" : "ax",
|
128 |
+
"AO2" : "ax",
|
129 |
+
"AW" : "ou",
|
130 |
+
"AW0" : "ou",
|
131 |
+
"AW1" : "ou",
|
132 |
+
"AW2" : "ou",
|
133 |
+
"AX" : "a",
|
134 |
+
"AY" : "ei",
|
135 |
+
"AY0" : "ei",
|
136 |
+
"AY1" : "ei",
|
137 |
+
"AY2" : "ei",
|
138 |
+
"B" : "b",
|
139 |
+
"CH" : "c",
|
140 |
+
"D" : "dx",
|
141 |
+
"DH" : "d",
|
142 |
+
"EH" : "ee",
|
143 |
+
"EH0" : "ee",
|
144 |
+
"EH1" : "ee",
|
145 |
+
"EH2" : "ee",
|
146 |
+
"ER" : "a r",
|
147 |
+
"ER0" : "a r",
|
148 |
+
"ER1" : "a r",
|
149 |
+
"ER2" : "a r",
|
150 |
+
"EY" : "ee",
|
151 |
+
"EY0" : "ee",
|
152 |
+
"EY1" : "ee",
|
153 |
+
"EY2" : "ee",
|
154 |
+
"F" : "f",
|
155 |
+
"G" : "g",
|
156 |
+
"HH" : "h",
|
157 |
+
"IH" : "i",
|
158 |
+
"IH0" : "i",
|
159 |
+
"IH1" : "i",
|
160 |
+
"IH2" : "i",
|
161 |
+
"IY" : "ii",
|
162 |
+
"IY0" : "ii",
|
163 |
+
"IY1" : "ii",
|
164 |
+
"IY2" : "ii",
|
165 |
+
"JH" : "j",
|
166 |
+
"K" : "k",
|
167 |
+
"L" : "l",
|
168 |
+
"M" : "m",
|
169 |
+
"N" : "n",
|
170 |
+
"NG" : "ng",
|
171 |
+
"OW" : "o",
|
172 |
+
"OW0" : "o",
|
173 |
+
"OW1" : "o",
|
174 |
+
"OW2" : "o",
|
175 |
+
"OY" : "ei",
|
176 |
+
"OY0" : "ei",
|
177 |
+
"OY1" : "ei",
|
178 |
+
"OY2" : "ei",
|
179 |
+
"P" : "p",
|
180 |
+
"R" : "r",
|
181 |
+
"S" : "s",
|
182 |
+
"SH" : "sh",
|
183 |
+
"T" : "tx",
|
184 |
+
"TH" : "t",
|
185 |
+
"UH" : "u",
|
186 |
+
"UH0" : "u",
|
187 |
+
"UH1" : "u",
|
188 |
+
"UH2" : "u",
|
189 |
+
"UW" : "uu",
|
190 |
+
"UW0" : "uu",
|
191 |
+
"UW1" : "uu",
|
192 |
+
"UW2" : "uu",
|
193 |
+
"V" : "w",
|
194 |
+
"W" : "w",
|
195 |
+
"Y" : "y",
|
196 |
+
"Z" : "z",
|
197 |
+
"ZH" : "sh",
|
198 |
+
}
|
199 |
+
|
200 |
+
# Mapping between the iitm cls and iitm char
|
201 |
+
self.cls_2_chr_map = {
|
202 |
+
"aa" : "A",
|
203 |
+
"ii" : "I",
|
204 |
+
"uu" : "U",
|
205 |
+
"ee" : "E",
|
206 |
+
"oo" : "O",
|
207 |
+
"nn" : "N",
|
208 |
+
"ae" : "ऍ",
|
209 |
+
"ag" : "ऽ",
|
210 |
+
"au" : "औ",
|
211 |
+
"axx" : "अ",
|
212 |
+
"ax" : "ऑ",
|
213 |
+
"bh" : "B",
|
214 |
+
"ch" : "C",
|
215 |
+
"dh" : "ध",
|
216 |
+
"dx" : "ड",
|
217 |
+
"dxh" : "ढ",
|
218 |
+
"dxhq" : "T",
|
219 |
+
"dxq" : "D",
|
220 |
+
"ei" : "ऐ",
|
221 |
+
"ai" : "ऐ",
|
222 |
+
"eu" : "உ",
|
223 |
+
"gh" : "घ",
|
224 |
+
"gq" : "G",
|
225 |
+
"hq" : "H",
|
226 |
+
"jh" : "J",
|
227 |
+
"kh" : "ख",
|
228 |
+
"khq" : "K",
|
229 |
+
"kq" : "क",
|
230 |
+
"ln" : "ൾ",
|
231 |
+
"lw" : "ൽ",
|
232 |
+
"lx" : "ള",
|
233 |
+
"mq" : "M",
|
234 |
+
"nd" : "न",
|
235 |
+
"ng" : "ङ",
|
236 |
+
"nj" : "ञ",
|
237 |
+
"nk" : "Y",
|
238 |
+
"nw" : "ൺ",
|
239 |
+
"nx" : "ण",
|
240 |
+
"ou" : "औ",
|
241 |
+
"ph" : "P",
|
242 |
+
"rq" : "R",
|
243 |
+
"rqw" : "ॠ",
|
244 |
+
"rw" : "ർ",
|
245 |
+
"rx" : "र",
|
246 |
+
"sh" : "श",
|
247 |
+
"sx" : "ष",
|
248 |
+
"th" : "थ",
|
249 |
+
"tx" : "ट",
|
250 |
+
"txh" : "ठ",
|
251 |
+
"wv" : "W",
|
252 |
+
"zh" : "Z",
|
253 |
+
}
|
254 |
+
|
255 |
+
# Multilingual support for OOV characters
|
256 |
+
oov_map_json_file = 'multilingualcharmap.json'
|
257 |
+
with open(oov_map_json_file, 'r') as oov_file:
|
258 |
+
self.oov_map = json.load(oov_file)
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
def load_lang_dict(self, language, phone_dictionary):
|
263 |
+
# load dictionary for requested language
|
264 |
+
try:
|
265 |
+
|
266 |
+
dict_file = language
|
267 |
+
print("language", language)
|
268 |
+
dict_file_path = os.path.join(self.dict_location, dict_file)
|
269 |
+
print("dict_file_path", dict_file_path)
|
270 |
+
df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
|
271 |
+
phone_dictionary[language] = df.set_index(0).to_dict('dict')[1]
|
272 |
+
|
273 |
+
dict_file = 'english'
|
274 |
+
dict_file_path = os.path.join(self.dict_location, dict_file)
|
275 |
+
df = pd.read_csv(dict_file_path, delimiter=" ", header=None, dtype=str)
|
276 |
+
phone_dictionary['english'] = df.set_index(0).to_dict('dict')[1]
|
277 |
+
|
278 |
+
except Exception as e:
|
279 |
+
print(traceback.format_exc())
|
280 |
+
|
281 |
+
return phone_dictionary
|
282 |
+
|
283 |
+
def __is_float(self, word):
|
284 |
+
parts = word.split('.')
|
285 |
+
if len(parts) != 2:
|
286 |
+
return False
|
287 |
+
return parts[0].isdecimal() and parts[1].isdecimal()
|
288 |
+
|
289 |
+
def en_g2p(self, word):
|
290 |
+
phn_out = self.g2p(word)
|
291 |
+
# print(f"phn_out: {phn_out}")
|
292 |
+
# iterate over the string list and replace each word with the corresponding value from the dictionary
|
293 |
+
for i, phn in enumerate(phn_out):
|
294 |
+
if phn in self.cmu_2_cls_map.keys():
|
295 |
+
phn_out[i] = self.cmu_2_cls_map[phn]
|
296 |
+
# cls_out = self.cmu_2_cls_map[phn]
|
297 |
+
if phn_out[i] in self.cls_2_chr_map.keys():
|
298 |
+
phn_out[i] = self.cls_2_chr_map[phn_out[i]]
|
299 |
+
else:
|
300 |
+
pass
|
301 |
+
else:
|
302 |
+
pass # ignore words that are not in the dictionary
|
303 |
+
# print(f"i: {i}, phn: {phn}, cls_out: {cls_out}, phn_out: {phn_out[i]}")
|
304 |
+
return ("".join(phn_out)).strip().replace(" ", "")
|
305 |
+
|
306 |
+
def __post_phonify(self, text, language, gender):
|
307 |
+
language_gender_id = language+'_'+gender
|
308 |
+
if language_gender_id in self.oov_map.keys():
|
309 |
+
output_string = ''
|
310 |
+
for char in text:
|
311 |
+
if char in self.oov_map[language_gender_id].keys():
|
312 |
+
output_string += self.oov_map[language_gender_id][char]
|
313 |
+
else:
|
314 |
+
output_string += char
|
315 |
+
# output_string += self.oov_map['language_gender_id']['char']
|
316 |
+
return output_string
|
317 |
+
else:
|
318 |
+
return text
|
319 |
+
|
320 |
+
def __is_english_word(self, word):
|
321 |
+
maxchar = max(word)
|
322 |
+
if u'\u0000' <= maxchar <= u'\u007f':
|
323 |
+
return True
|
324 |
+
return False
|
325 |
+
|
326 |
+
def __phonify(self, text, language, gender, phone_dictionary):
|
327 |
+
# text is expected to be a list of strings
|
328 |
+
words = set((" ".join(text)).split(" "))
|
329 |
+
#print(f"words test: {words}")
|
330 |
+
non_dict_words = []
|
331 |
+
|
332 |
+
|
333 |
+
if language in phone_dictionary:
|
334 |
+
for word in words:
|
335 |
+
# print(f"word: {word}")
|
336 |
+
if word not in phone_dictionary[language] and (language == "english" or (not self.__is_english_word(word))):
|
337 |
+
non_dict_words.append(word)
|
338 |
+
#print('INSIDE IF CONDITION OF ADDING WORDS')
|
339 |
+
else:
|
340 |
+
non_dict_words = words
|
341 |
+
print(f"word not in dict: {non_dict_words}")
|
342 |
+
|
343 |
+
if len(non_dict_words) > 0:
|
344 |
+
# unified parser has to be run for the non dictionary words
|
345 |
+
os.makedirs("tmp", exist_ok=True)
|
346 |
+
timestamp = str(time.time())
|
347 |
+
non_dict_words_file = os.path.abspath("tmp/non_dict_words_" + timestamp)
|
348 |
+
out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
|
349 |
+
with open(non_dict_words_file, "w") as f:
|
350 |
+
f.write("\n".join(non_dict_words))
|
351 |
+
|
352 |
+
if(language == 'tamil'):
|
353 |
+
current_directory = os.getcwd()
|
354 |
+
#tamil_parser_cmd = "tamil_parser.sh"
|
355 |
+
tamil_parser_cmd = f"{current_directory}/ssn_parser_new/tamil_parser.py"
|
356 |
+
#subprocess.run(["bash", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, "ssn_parser"])
|
357 |
+
subprocess.run(["python", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, f"{current_directory}/ssn_parser_new"])
|
358 |
+
elif(language == 'english'):
|
359 |
+
phn_out_dict = {}
|
360 |
+
for i in range(0,len(non_dict_words)):
|
361 |
+
phn_out_dict[non_dict_words[i]] = self.en_g2p(non_dict_words[i])
|
362 |
+
# Create a string representation of the dictionary
|
363 |
+
data_str = "\n".join([f"{key}\t{value}" for key, value in phn_out_dict.items()])
|
364 |
+
print(f"data_str: {data_str}")
|
365 |
+
with open(out_dict_file, "w") as f:
|
366 |
+
f.write(data_str)
|
367 |
+
else:
|
368 |
+
|
369 |
+
out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
|
370 |
+
from get_phone_mapped_python import TextReplacer
|
371 |
+
|
372 |
+
from indic_unified_parser.uparser import wordparse
|
373 |
+
|
374 |
+
text_replacer=TextReplacer()
|
375 |
+
# def write_output_to_file(output_text, file_path):
|
376 |
+
# with open(file_path, 'w') as f:
|
377 |
+
# f.write(output_text)
|
378 |
+
parsed_output_list = []
|
379 |
+
for word in non_dict_words:
|
380 |
+
parsed_word = wordparse(word, 0, 0, 1)
|
381 |
+
parsed_output_list.append(parsed_word)
|
382 |
+
replaced_output_list = [text_replacer.apply_replacements(parsed_word) for parsed_word in parsed_output_list]
|
383 |
+
with open(out_dict_file, 'w', encoding='utf-8') as file:
|
384 |
+
for original_word, formatted_word in zip(non_dict_words, replaced_output_list):
|
385 |
+
line = f"{original_word}\t{formatted_word}\n"
|
386 |
+
file.write(line)
|
387 |
+
print(line, end='')
|
388 |
+
|
389 |
+
|
390 |
+
try:
|
391 |
+
|
392 |
+
df = pd.read_csv(out_dict_file, delimiter="\t", header=None, dtype=str)
|
393 |
+
#print('DATAFRAME OUTPUT FILE', df.head())
|
394 |
+
new_dict = df.dropna().set_index(0).to_dict('dict')[1]
|
395 |
+
#print("new dict",new_dict)
|
396 |
+
if language not in phone_dictionary:
|
397 |
+
phone_dictionary[language] = new_dict
|
398 |
+
else:
|
399 |
+
phone_dictionary[language].update(new_dict)
|
400 |
+
# run a non-blocking child process to update the dictionary file
|
401 |
+
#print("phone_dict", self.phone_dictionary)
|
402 |
+
p = Process(target=add_to_dictionary, args=(new_dict, os.path.join(self.dict_location, language)))
|
403 |
+
p.start()
|
404 |
+
except Exception as err:
|
405 |
+
print(f"Error: While loading {out_dict_file}")
|
406 |
+
traceback.print_exc()
|
407 |
+
|
408 |
+
# phonify text with dictionary
|
409 |
+
text_phonified = []
|
410 |
+
for phrase in text:
|
411 |
+
phrase_phonified = []
|
412 |
+
for word in phrase.split(" "):
|
413 |
+
if self.__is_english_word(word):
|
414 |
+
if word in phone_dictionary["english"]:
|
415 |
+
phrase_phonified.append(str(phone_dictionary["english"][word]))
|
416 |
+
else:
|
417 |
+
phrase_phonified.append(str(self.en_g2p(word)))
|
418 |
+
elif word in phone_dictionary[language]:
|
419 |
+
# if a word could not be parsed, skip it
|
420 |
+
phrase_phonified.append(str(phone_dictionary[language][word]))
|
421 |
+
# text_phonified.append(self.__post_phonify(" ".join(phrase_phonified),language, gender))
|
422 |
+
text_phonified.append(" ".join(phrase_phonified))
|
423 |
+
return text_phonified
|
424 |
+
|
425 |
+
def __merge_lists(self, lists):
|
426 |
+
merged_string = ""
|
427 |
+
for list in lists:
|
428 |
+
for word in list:
|
429 |
+
merged_string += word + " "
|
430 |
+
return merged_string.strip()
|
431 |
+
|
432 |
+
def __phonify_list(self, text, language, gender, phone_dictionary):
|
433 |
+
# text is expected to be a list of list of strings
|
434 |
+
words = set(self.__merge_lists(text).split(" "))
|
435 |
+
non_dict_words = []
|
436 |
+
if language in phone_dictionary:
|
437 |
+
for word in words:
|
438 |
+
if word not in phone_dictionary[language] and (language == "english" or (not self.__is_english_word(word))):
|
439 |
+
non_dict_words.append(word)
|
440 |
+
else:
|
441 |
+
non_dict_words = words
|
442 |
+
|
443 |
+
if len(non_dict_words) > 0:
|
444 |
+
print(len(non_dict_words))
|
445 |
+
print(non_dict_words)
|
446 |
+
# unified parser has to be run for the non dictionary words
|
447 |
+
os.makedirs("tmp", exist_ok=True)
|
448 |
+
timestamp = str(time.time())
|
449 |
+
non_dict_words_file = os.path.abspath("tmp/non_dict_words_" + timestamp)
|
450 |
+
out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
|
451 |
+
with open(non_dict_words_file, "w") as f:
|
452 |
+
f.write("\n".join(non_dict_words))
|
453 |
+
|
454 |
+
if(language == 'tamil'):
|
455 |
+
current_directory = os.getcwd()
|
456 |
+
#tamil_parser_cmd = "tamil_parser.sh"
|
457 |
+
tamil_parser_cmd = f"{current_directory}/ssn_parser_new/tamil_parser.py"
|
458 |
+
#subprocess.run(["bash", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, "ssn_parser"])
|
459 |
+
subprocess.run(["python", tamil_parser_cmd, non_dict_words_file, out_dict_file, timestamp, f"{current_directory}/ssn_parser_new"])
|
460 |
+
|
461 |
+
elif(language == 'english'):
|
462 |
+
phn_out_dict = {}
|
463 |
+
for i in range(0,len(non_dict_words)):
|
464 |
+
phn_out_dict[non_dict_words[i]] = self.en_g2p(non_dict_words[i])
|
465 |
+
# Create a string representation of the dictionary
|
466 |
+
data_str = "\n".join([f"{key}\t{value}" for key, value in phn_out_dict.items()])
|
467 |
+
print(f"data_str: {data_str}")
|
468 |
+
with open(out_dict_file, "w") as f:
|
469 |
+
f.write(data_str)
|
470 |
+
else:
|
471 |
+
out_dict_file = os.path.abspath("tmp/out_dict_" + timestamp)
|
472 |
+
from get_phone_mapped_python import TextReplacer
|
473 |
+
|
474 |
+
from indic_unified_parser.uparser import wordparse
|
475 |
+
|
476 |
+
text_replacer=TextReplacer()
|
477 |
+
|
478 |
+
parsed_output_list = []
|
479 |
+
for word in non_dict_words:
|
480 |
+
parsed_word = wordparse(word, 0, 0, 1)
|
481 |
+
parsed_output_list.append(parsed_word)
|
482 |
+
replaced_output_list = [text_replacer.apply_replacements(parsed_word) for parsed_word in parsed_output_list]
|
483 |
+
with open(out_dict_file, 'w', encoding='utf-8') as file:
|
484 |
+
for original_word, formatted_word in zip(non_dict_words, replaced_output_list):
|
485 |
+
line = f"{original_word}\t{formatted_word}\n"
|
486 |
+
file.write(line)
|
487 |
+
print(line, end='')
|
488 |
+
|
489 |
+
try:
|
490 |
+
df = pd.read_csv(out_dict_file, delimiter="\t", header=None, dtype=str)
|
491 |
+
new_dict = df.dropna().set_index(0).to_dict('dict')[1]
|
492 |
+
print(new_dict)
|
493 |
+
if language not in phone_dictionary:
|
494 |
+
phone_dictionary[language] = new_dict
|
495 |
+
else:
|
496 |
+
phone_dictionary[language].update(new_dict)
|
497 |
+
# run a non-blocking child process to update the dictionary file
|
498 |
+
p = Process(target=add_to_dictionary, args=(new_dict, os.path.join(self.dict_location, language)))
|
499 |
+
p.start()
|
500 |
+
except Exception as err:
|
501 |
+
traceback.print_exc()
|
502 |
+
|
503 |
+
# phonify text with dictionary
|
504 |
+
text_phonified = []
|
505 |
+
for line in text:
|
506 |
+
line_phonified = []
|
507 |
+
for phrase in line:
|
508 |
+
phrase_phonified = []
|
509 |
+
for word in phrase.split(" "):
|
510 |
+
if self.__is_english_word(word):
|
511 |
+
if word in phone_dictionary["english"]:
|
512 |
+
phrase_phonified.append(str(phone_dictionary["english"][word]))
|
513 |
+
else:
|
514 |
+
phrase_phonified.append(str(self.en_g2p(word)))
|
515 |
+
elif word in phone_dictionary[language]:
|
516 |
+
# if a word could not be parsed, skip it
|
517 |
+
phrase_phonified.append(str(phone_dictionary[language][word]))
|
518 |
+
# line_phonified.append(self.__post_phonify(" ".join(phrase_phonified), language, gender))
|
519 |
+
line_phonified.append(" ".join(phrase_phonified))
|
520 |
+
text_phonified.append(line_phonified)
|
521 |
+
return text_phonified
|
522 |
+
|
523 |
+
def phonify(self, text, language, gender, phone_dictionary):
|
524 |
+
if not isinstance(text, list):
|
525 |
+
out = self.__phonify([text], language, gender)
|
526 |
+
return out[0]
|
527 |
+
return self.__phonify(text, language, gender, phone_dictionary)
|
528 |
+
|
529 |
+
def phonify_list(self, text, language, gender, phone_dictionary):
|
530 |
+
if isinstance(text, list):
|
531 |
+
return self.__phonify_list(text, language, gender, phone_dictionary)
|
532 |
+
else:
|
533 |
+
print("Error!! Expected to have a list as input.")
|
534 |
+
|
535 |
+
|
536 |
+
class TextNormalizer:
|
537 |
+
def __init__(self, char_map_location=None, phonifier = Phonifier()):
|
538 |
+
self.phonifier = phonifier
|
539 |
+
if char_map_location is None:
|
540 |
+
char_map_location = "charmap"
|
541 |
+
|
542 |
+
# this is a static set of cleaning rules to be applied
|
543 |
+
self.cleaning_rules = {
|
544 |
+
" +" : " ",
|
545 |
+
"^ +" : "",
|
546 |
+
" +$" : "",
|
547 |
+
"#$" : "",
|
548 |
+
"# +$" : "",
|
549 |
+
}
|
550 |
+
|
551 |
+
# this is the list of languages supported by num_to_words
|
552 |
+
self.keydict = {"english" : "en",
|
553 |
+
"hindi" : "hi",
|
554 |
+
"gujarati" : "gu",
|
555 |
+
"marathi" : "mr",
|
556 |
+
"bengali" : "bn",
|
557 |
+
"telugu" : "te",
|
558 |
+
"tamil" : "ta",
|
559 |
+
"kannada" : "kn",
|
560 |
+
"odia" : "or",
|
561 |
+
"punjabi" : "pa"
|
562 |
+
}
|
563 |
+
|
564 |
+
self.g2p = G2p()
|
565 |
+
print('Loading G2P model... Done!')
|
566 |
+
|
567 |
+
def __post_cleaning(self, text):
|
568 |
+
for key, replacement in self.cleaning_rules.items():
|
569 |
+
text = re.sub(key, replacement, text)
|
570 |
+
return text
|
571 |
+
|
572 |
+
def __post_cleaning_list(self, text):
|
573 |
+
# input is supposed to be a list of strings
|
574 |
+
output_text = []
|
575 |
+
for line in text:
|
576 |
+
for key, replacement in self.cleaning_rules.items():
|
577 |
+
line = re.sub(key, replacement, line)
|
578 |
+
output_text.append(line)
|
579 |
+
return output_text
|
580 |
+
|
581 |
+
def __check_char_type(self, str_c):
|
582 |
+
# Determine the type of the character
|
583 |
+
if str_c.isnumeric():
|
584 |
+
char_type = "number"
|
585 |
+
elif str_c in string.punctuation:
|
586 |
+
char_type = "punctuation"
|
587 |
+
elif str_c in string.whitespace:
|
588 |
+
char_type = "whitespace"
|
589 |
+
elif str_c.isalpha() and str_c.isascii():
|
590 |
+
char_type = "ascii"
|
591 |
+
else:
|
592 |
+
char_type = "non-ascii"
|
593 |
+
return char_type
|
594 |
+
|
595 |
+
def insert_space(self, text):
|
596 |
+
'''
|
597 |
+
Check if the text contains numbers and English words and if they are without space inserts space between them.
|
598 |
+
'''
|
599 |
+
# Initialize variables to track the previous character type and whether a space should be inserted
|
600 |
+
prev_char_type = None
|
601 |
+
next_char_type = None
|
602 |
+
insert_space = False
|
603 |
+
|
604 |
+
# Output string
|
605 |
+
output_string = ""
|
606 |
+
|
607 |
+
# Iterate through each character in the text
|
608 |
+
for i, c in enumerate(text):
|
609 |
+
# Determine the type of the character
|
610 |
+
char_type = self.__check_char_type(c)
|
611 |
+
if i == (len(text) - 1):
|
612 |
+
next_char_type = None
|
613 |
+
else:
|
614 |
+
next_char_type = self.__check_char_type(text[i+1])
|
615 |
+
# print(f"{i}: {c} is a {char_type} character and next character is a {next_char_type}")
|
616 |
+
|
617 |
+
# If the character type has changed from the previous character, check if a space should be inserted
|
618 |
+
if (char_type != prev_char_type and prev_char_type != None and char_type != "punctuation" and char_type != "whitespace"):
|
619 |
+
if next_char_type != "punctuation" or next_char_type != "whitespace":
|
620 |
+
insert_space = True
|
621 |
+
|
622 |
+
# Insert a space if needed
|
623 |
+
if insert_space:
|
624 |
+
output_string += " "+c
|
625 |
+
insert_space = False
|
626 |
+
else:
|
627 |
+
output_string += c
|
628 |
+
|
629 |
+
# Update the previous character type
|
630 |
+
prev_char_type = char_type
|
631 |
+
|
632 |
+
# Print the modified text
|
633 |
+
output_string = re.sub(r' +', ' ', output_string)
|
634 |
+
return output_string
|
635 |
+
|
636 |
+
def insert_space_list(self, text):
|
637 |
+
'''
|
638 |
+
Expect the input to be in form of list of string.
|
639 |
+
Check if the text contains numbers and English words and if they are without space inserts space between them.
|
640 |
+
'''
|
641 |
+
# Output string list
|
642 |
+
output_list = []
|
643 |
+
|
644 |
+
for line in text:
|
645 |
+
# Initialize variables to track the previous character type and whether a space should be inserted
|
646 |
+
prev_char_type = None
|
647 |
+
next_char_type = None
|
648 |
+
insert_space = False
|
649 |
+
# Output string
|
650 |
+
output_string = ""
|
651 |
+
# Iterate through each character in the line
|
652 |
+
for i, c in enumerate(line):
|
653 |
+
# Determine the type of the character
|
654 |
+
char_type = self.__check_char_type(c)
|
655 |
+
if i == (len(line) - 1):
|
656 |
+
next_char_type = None
|
657 |
+
else:
|
658 |
+
next_char_type = self.__check_char_type(line[i+1])
|
659 |
+
# print(f"{i}: {c} is a {char_type} character and next character is a {next_char_type}")
|
660 |
+
|
661 |
+
# If the character type has changed from the previous character, check if a space should be inserted
|
662 |
+
if (char_type != prev_char_type and prev_char_type != None and char_type != "punctuation" and char_type != "whitespace"):
|
663 |
+
if next_char_type != "punctuation" or next_char_type != "whitespace":
|
664 |
+
insert_space = True
|
665 |
+
|
666 |
+
# Insert a space if needed
|
667 |
+
if insert_space:
|
668 |
+
output_string += " "+c
|
669 |
+
insert_space = False
|
670 |
+
else:
|
671 |
+
output_string += c
|
672 |
+
|
673 |
+
# Update the previous character type
|
674 |
+
prev_char_type = char_type
|
675 |
+
|
676 |
+
# Print the modified line
|
677 |
+
output_string = re.sub(r' +', ' ', output_string)
|
678 |
+
output_list.append(output_string)
|
679 |
+
return output_list
|
680 |
+
|
681 |
+
def num2text(self, text, language):
|
682 |
+
if language in self.keydict.keys():
|
683 |
+
digits = sorted(list(map(int, re.findall(r'\d+', text))),reverse=True)
|
684 |
+
if digits:
|
685 |
+
for digit in digits:
|
686 |
+
text = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language])+' ', text)
|
687 |
+
return self.__post_cleaning(text)
|
688 |
+
else:
|
689 |
+
print(f"No num-to-char for the given language {language}.")
|
690 |
+
return self.__post_cleaning(text)
|
691 |
+
|
692 |
+
def num2text_list(self, text, language):
|
693 |
+
# input is supposed to be a list of strings
|
694 |
+
if language in self.keydict.keys():
|
695 |
+
output_text = []
|
696 |
+
for line in text:
|
697 |
+
digits = sorted(list(map(int, re.findall(r'\d+', line))),reverse=True)
|
698 |
+
if digits:
|
699 |
+
for digit in digits:
|
700 |
+
line = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language])+' ', line)
|
701 |
+
output_text.append(line)
|
702 |
+
return self.__post_cleaning_list(output_text)
|
703 |
+
else:
|
704 |
+
print(f"No num-to-char for the given language {language}.")
|
705 |
+
return self.__post_cleaning_list(text)
|
706 |
+
|
707 |
+
def numberToTextConverter(self, text, language):
|
708 |
+
if language in self.keydict.keys():
|
709 |
+
matches = re.findall(r'\d+\.\d+|\d+', text)
|
710 |
+
digits = sorted([int(match) if match.isdigit() else match if re.match(r'^\d+(\.\d+)?$', match) else str(match) for match in matches], key=lambda x: float(x) if isinstance(x, str) and '.' in x else x, reverse=True)
|
711 |
+
if digits:
|
712 |
+
for digit in digits:
|
713 |
+
|
714 |
+
if isinstance(digit, int):
|
715 |
+
text = re.sub(str(digit), ' '+num_to_word(digit, self.keydict[language]).replace(",", "")+' ', text)
|
716 |
+
else:
|
717 |
+
parts = str(digit).split('.')
|
718 |
+
integer_part = int(parts[0])
|
719 |
+
data1 = num_to_word(integer_part, self.keydict[language]).replace(",", "")
|
720 |
+
decimal_part = str(parts[1])
|
721 |
+
data2 = ''
|
722 |
+
for i in decimal_part:
|
723 |
+
data2 = data2+' '+num_to_word(i, self.keydict[language])
|
724 |
+
if language == 'hindi':
|
725 |
+
final_data = f'{data1} दशमलव {data2}'
|
726 |
+
elif language == 'tamil':
|
727 |
+
final_data = f'{data1} புள்ளி {data2}'
|
728 |
+
else:
|
729 |
+
final_data = f'{data1} point {data2}'
|
730 |
+
|
731 |
+
|
732 |
+
text = re.sub(str(digit), ' '+final_data+' ', text)
|
733 |
+
|
734 |
+
return self.__post_cleaning(text)
|
735 |
+
else:
|
736 |
+
|
737 |
+
|
738 |
+
words = {
|
739 |
+
'0': 'zero', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
|
740 |
+
'5': 'five', '6': 'six', '7': 'seven', '8': 'eight', '9': 'nine'
|
741 |
+
}
|
742 |
+
|
743 |
+
|
744 |
+
# Use regular expression to find and replace decimal points in numbers
|
745 |
+
text = re.sub(r'(?<=\d)\.(?=\d)', ' point ', text)
|
746 |
+
|
747 |
+
# Find all occurrences of numbers with decimal points and convert them to words
|
748 |
+
matches = re.findall(r'point (\d+)', text)
|
749 |
+
|
750 |
+
for match in matches:
|
751 |
+
replacement = ' '.join(words[digit] for digit in match)
|
752 |
+
text = text.replace(f'point {match}', f'point {replacement}', 1)
|
753 |
+
|
754 |
+
|
755 |
+
return self.__post_cleaning(text)
|
756 |
+
|
757 |
+
|
758 |
+
def normalize(self, text, language):
|
759 |
+
return self.__post_cleaning(text)
|
760 |
+
|
761 |
+
def normalize_list(self, text, language):
|
762 |
+
# input is supposed to be a list of strings
|
763 |
+
return self.__post_cleaning_list(text)
|
764 |
+
|
765 |
+
|
766 |
+
class TextPhrasifier:
|
767 |
+
@classmethod
|
768 |
+
def phrasify(cls, text):
|
769 |
+
phrase_list = []
|
770 |
+
for phrase in text.split("#"):
|
771 |
+
phrase = phrase.strip()
|
772 |
+
if phrase != "":
|
773 |
+
phrase_list.append(phrase)
|
774 |
+
return phrase_list
|
775 |
+
|
776 |
+
class TextPhrasifier_List:
|
777 |
+
@classmethod
|
778 |
+
def phrasify(cls, text):
|
779 |
+
# input is supposed to be a list of strings
|
780 |
+
# output is list of list of strings
|
781 |
+
output_list = []
|
782 |
+
for line in text:
|
783 |
+
phrase_list = []
|
784 |
+
for phrase in line.split("#"):
|
785 |
+
phrase = phrase.strip()
|
786 |
+
if phrase != "":
|
787 |
+
phrase_list.append(phrase)
|
788 |
+
output_list.append(phrase_list)
|
789 |
+
return output_list
|
790 |
+
|
791 |
+
class DurAlignTextProcessor:
|
792 |
+
def __init__(self):
|
793 |
+
# this is a static set of cleaning rules to be applied
|
794 |
+
self.cleaning_rules = {
|
795 |
+
" +" : "",
|
796 |
+
"^" : "$",
|
797 |
+
"$" : ".",
|
798 |
+
}
|
799 |
+
self.cleaning_rules_English = {
|
800 |
+
" +" : "",
|
801 |
+
"$" : ".",
|
802 |
+
}
|
803 |
+
def textProcesor(self, text):
|
804 |
+
for key, replacement in self.cleaning_rules.items():
|
805 |
+
for idx in range(0,len(text)):
|
806 |
+
text[idx] = re.sub(key, replacement, text[idx])
|
807 |
+
|
808 |
+
return text
|
809 |
+
|
810 |
+
def textProcesorForEnglish(self, text):
|
811 |
+
for key, replacement in self.cleaning_rules_English.items():
|
812 |
+
for idx in range(0,len(text)):
|
813 |
+
text[idx] = re.sub(key, replacement, text[idx])
|
814 |
+
|
815 |
+
return text
|
816 |
+
|
817 |
+
def textProcesor_list(self, text):
|
818 |
+
# input expected in 'list of list of string' format
|
819 |
+
output_text = []
|
820 |
+
for line in text:
|
821 |
+
for key, replacement in self.cleaning_rules.items():
|
822 |
+
for idx in range(0,len(line)):
|
823 |
+
line[idx] = re.sub(key, replacement, line[idx])
|
824 |
+
output_text.append(line)
|
825 |
+
|
826 |
+
return output_text
|
827 |
+
|
828 |
+
|
829 |
+
class TTSDurAlignPreprocessor:
|
830 |
+
def __init__(self,
|
831 |
+
text_cleaner = TextCleaner(),
|
832 |
+
text_normalizer=TextNormalizer(),
|
833 |
+
phonifier = Phonifier(),
|
834 |
+
post_processor = DurAlignTextProcessor()):
|
835 |
+
self.text_cleaner = text_cleaner
|
836 |
+
self.text_normalizer = text_normalizer
|
837 |
+
self.phonifier = phonifier
|
838 |
+
self.post_processor = post_processor
|
839 |
+
|
840 |
+
def preprocess(self, text, language, gender, phone_dictionary):
|
841 |
+
# text = text.strip()
|
842 |
+
print(text)
|
843 |
+
text = self.text_normalizer.numberToTextConverter(text, language)
|
844 |
+
text = self.text_cleaner.clean(text)
|
845 |
+
print("cleaned text", text)
|
846 |
+
# text = self.text_normalizer.insert_space(text)
|
847 |
+
#text = self.text_normalizer.num2text(text, language)
|
848 |
+
# print(text)
|
849 |
+
text = self.text_normalizer.normalize(text, language)
|
850 |
+
# print(text)
|
851 |
+
phrasified_text = TextPhrasifier.phrasify(text)
|
852 |
+
#print("phrased",phrasified_text)
|
853 |
+
|
854 |
+
if language not in list(phone_dictionary.keys()):
|
855 |
+
phone_dictionary = self.phonifier.load_lang_dict(language, phone_dictionary)
|
856 |
+
|
857 |
+
print(phone_dictionary.keys())
|
858 |
+
|
859 |
+
phonified_text = self.phonifier.phonify(phrasified_text, language, gender, phone_dictionary)
|
860 |
+
print("phonetext",phonified_text)
|
861 |
+
phonified_text = self.post_processor.textProcesor(phonified_text)
|
862 |
+
print(phonified_text)
|
863 |
+
return phonified_text, phrasified_text
|
864 |
+
|
865 |
+
class TTSDurAlignPreprocessor_VTT:
|
866 |
+
def __init__(self,
|
867 |
+
text_cleaner = TextCleaner(),
|
868 |
+
text_normalizer=TextNormalizer(),
|
869 |
+
phonifier = Phonifier(),
|
870 |
+
post_processor = DurAlignTextProcessor()):
|
871 |
+
self.text_cleaner = text_cleaner
|
872 |
+
self.text_normalizer = text_normalizer
|
873 |
+
self.phonifier = phonifier
|
874 |
+
self.post_processor = post_processor
|
875 |
+
|
876 |
+
def preprocess(self, text, language, gender):
|
877 |
+
# text = text.strip()
|
878 |
+
text = self.text_cleaner.clean_list(text)
|
879 |
+
# text = self.text_normalizer.insert_space_list(text)
|
880 |
+
text = self.text_normalizer.num2text_list(text, language)
|
881 |
+
text = self.text_normalizer.normalize_list(text, language)
|
882 |
+
phrasified_text = TextPhrasifier_List.phrasify(text)
|
883 |
+
phonified_text = self.phonifier.phonify_list(phrasified_text, language, gender)
|
884 |
+
phonified_text = self.post_processor.textProcesor_list(phonified_text)
|
885 |
+
return phonified_text, phrasified_text
|
886 |
+
|
887 |
+
|
888 |
+
class CharTextPreprocessor:
|
889 |
+
def __init__(self,
|
890 |
+
text_cleaner = TextCleaner(),
|
891 |
+
text_normalizer=TextNormalizer()):
|
892 |
+
self.text_cleaner = text_cleaner
|
893 |
+
self.text_normalizer = text_normalizer
|
894 |
+
|
895 |
+
def preprocess(self, text, language, gender=None, phone_dictionary=None):
|
896 |
+
text = text.strip()
|
897 |
+
text = self.text_normalizer.numberToTextConverter(text, language)
|
898 |
+
text = self.text_cleaner.clean(text)
|
899 |
+
# text = self.text_normalizer.insert_space(text)
|
900 |
+
#text = self.text_normalizer.num2text(text, language)
|
901 |
+
text = self.text_normalizer.normalize(text, language)
|
902 |
+
phrasified_text = TextPhrasifier.phrasify(text)
|
903 |
+
phonified_text = phrasified_text # No phonification for character TTS models
|
904 |
+
return phonified_text, phrasified_text
|
905 |
+
|
906 |
+
class CharTextPreprocessor_VTT:
|
907 |
+
def __init__(self,
|
908 |
+
text_cleaner = TextCleaner(),
|
909 |
+
text_normalizer=TextNormalizer()
|
910 |
+
):
|
911 |
+
self.text_cleaner = text_cleaner
|
912 |
+
self.text_normalizer = text_normalizer
|
913 |
+
|
914 |
+
def preprocess(self, text, language, gender=None):
|
915 |
+
# text = text.strip()
|
916 |
+
text = self.text_cleaner.clean_list(text)
|
917 |
+
# text = self.text_normalizer.insert_space_list(text)
|
918 |
+
text = self.text_normalizer.num2text_list(text, language)
|
919 |
+
text = self.text_normalizer.normalize_list(text, language)
|
920 |
+
phrasified_text = TextPhrasifier_List.phrasify(text)
|
921 |
+
phonified_text = phrasified_text # No phonification for character TTS models
|
922 |
+
return phonified_text, phrasified_text
|
923 |
+
|
924 |
+
|
925 |
+
class TTSPreprocessor:
|
926 |
+
def __init__(self,
|
927 |
+
text_cleaner = TextCleaner(),
|
928 |
+
text_normalizer=TextNormalizer(),
|
929 |
+
phonifier = Phonifier(),
|
930 |
+
text_phrasefier = TextPhrasifier(),
|
931 |
+
post_processor = DurAlignTextProcessor()):
|
932 |
+
self.text_cleaner = text_cleaner
|
933 |
+
self.text_normalizer = text_normalizer
|
934 |
+
self.phonifier = phonifier
|
935 |
+
self.text_phrasefier = text_phrasefier
|
936 |
+
self.post_processor = post_processor
|
937 |
+
|
938 |
+
def preprocess(self, text, language, gender, phone_dictionary):
|
939 |
+
text = text.strip()
|
940 |
+
text = self.text_normalizer.numberToTextConverter(text, language)
|
941 |
+
text = self.text_cleaner.clean(text)
|
942 |
+
# text = self.text_normalizer.insert_space(text)
|
943 |
+
#text = self.text_normalizer.num2text(text, language)
|
944 |
+
text = self.text_normalizer.normalize(text, language)
|
945 |
+
phrasified_text = TextPhrasifier.phrasify(text)
|
946 |
+
if language not in list(phone_dictionary.keys()):
|
947 |
+
phone_dictionary = self.phonifier.load_lang_dict(language, phone_dictionary)
|
948 |
+
phonified_text = self.phonifier.phonify(phrasified_text, language, gender, phone_dictionary)
|
949 |
+
print(phonified_text)
|
950 |
+
phonified_text = self.post_processor.textProcesorForEnglish(phonified_text)
|
951 |
+
print(phonified_text)
|
952 |
+
return phonified_text, phrasified_text
|
953 |
+
|
954 |
+
class TTSPreprocessor_VTT:
|
955 |
+
def __init__(self,
|
956 |
+
text_cleaner = TextCleaner(),
|
957 |
+
text_normalizer=TextNormalizer(),
|
958 |
+
phonifier = Phonifier(),
|
959 |
+
text_phrasefier = TextPhrasifier_List()):
|
960 |
+
self.text_cleaner = text_cleaner
|
961 |
+
self.text_normalizer = text_normalizer
|
962 |
+
self.phonifier = phonifier
|
963 |
+
self.text_phrasefier = text_phrasefier
|
964 |
+
|
965 |
+
def preprocess(self, text, language, gender):
|
966 |
+
# print(f"Original text: {text}")
|
967 |
+
text = self.text_cleaner.clean_list(text)
|
968 |
+
# print(f"After text cleaner: {text}")
|
969 |
+
# text = self.text_normalizer.insert_space_list(text)
|
970 |
+
# print(f"After insert space: {text}")
|
971 |
+
text = self.text_normalizer.num2text_list(text, language)
|
972 |
+
# print(f"After num2text: {text}")
|
973 |
+
text = self.text_normalizer.normalize_list(text, language)
|
974 |
+
# print(f"After text normalizer: {text}")
|
975 |
+
phrasified_text = TextPhrasifier_List.phrasify(text)
|
976 |
+
# print(f"phrasified_text: {phrasified_text}")
|
977 |
+
phonified_text = self.phonifier.phonify_list(phrasified_text, language, gender)
|
978 |
+
# print(f"phonified_text: {phonified_text}")
|
979 |
+
return phonified_text, phrasified_text
|