Update Sonoma model with faster 8x8 conv and split einsum attention
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Llama-2-7b-hf_chunk1.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk1.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk1.mlmodelc/metadata.json +9 -8
- Llama-2-7b-hf_chunk1.mlmodelc/model.mil +39 -37
- Llama-2-7b-hf_chunk1.mlmodelc/weights/weight.bin +1 -1
- Llama-2-7b-hf_chunk10.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk10.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk10.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk10.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk10.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk11.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk11.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk11.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk11.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk11.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk12.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk12.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk12.mlmodelc/metadata.json +35 -34
- Llama-2-7b-hf_chunk12.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk12.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk13.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk13.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk13.mlmodelc/metadata.json +10 -11
- Llama-2-7b-hf_chunk13.mlmodelc/model.mil +25 -22
- Llama-2-7b-hf_chunk13.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk2.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk2.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk2.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk2.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk2.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk3.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk3.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk3.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk3.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk3.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk4.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk4.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk4.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk4.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk4.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk5.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk5.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk5.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk5.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk5.mlmodelc/weights/weight.bin +2 -2
- Llama-2-7b-hf_chunk6.mlmodelc/analytics/coremldata.bin +1 -1
- Llama-2-7b-hf_chunk6.mlmodelc/coremldata.bin +2 -2
- Llama-2-7b-hf_chunk6.mlmodelc/metadata.json +42 -41
- Llama-2-7b-hf_chunk6.mlmodelc/model.mil +0 -0
- Llama-2-7b-hf_chunk6.mlmodelc/weights/weight.bin +2 -2
Llama-2-7b-hf_chunk1.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75aec049f180c798ac703b21d39421b0cb60122e24f20933de1e3729242356ac
|
3 |
size 243
|
Llama-2-7b-hf_chunk1.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8eea6be9d5db2d6fafee48085cec7ae6575566482e1f313ab8eaf35b75c0fbdf
|
3 |
+
size 409
|
Llama-2-7b-hf_chunk1.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1, 1, 64
|
43 |
"name" : "mask",
|
44 |
"type" : "MultiArray"
|
45 |
}
|
@@ -52,9 +52,10 @@
|
|
52 |
"Select" : 2,
|
53 |
"Tile" : 2,
|
54 |
"Ios16.sub" : 3,
|
55 |
-
"Transpose" :
|
56 |
"Ios16.gather" : 3,
|
57 |
-
"ExpandDims" :
|
|
|
58 |
"Ios16.maximum" : 1,
|
59 |
"Ios16.less" : 2
|
60 |
},
|
@@ -74,7 +75,7 @@
|
|
74 |
"userDefinedMetadata" : {
|
75 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
76 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
77 |
-
"com.github.apple.coremltools.version" : "
|
78 |
},
|
79 |
"inputSchema" : [
|
80 |
{
|
@@ -98,7 +99,7 @@
|
|
98 |
"type" : "MultiArray"
|
99 |
}
|
100 |
],
|
101 |
-
"generatedClassName" : "
|
102 |
"method" : "predict"
|
103 |
}
|
104 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 512, 1, 64]",
|
43 |
"name" : "mask",
|
44 |
"type" : "MultiArray"
|
45 |
}
|
|
|
52 |
"Select" : 2,
|
53 |
"Tile" : 2,
|
54 |
"Ios16.sub" : 3,
|
55 |
+
"Transpose" : 2,
|
56 |
"Ios16.gather" : 3,
|
57 |
+
"ExpandDims" : 3,
|
58 |
+
"Ios16.reshape" : 1,
|
59 |
"Ios16.maximum" : 1,
|
60 |
"Ios16.less" : 2
|
61 |
},
|
|
|
75 |
"userDefinedMetadata" : {
|
76 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
77 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
78 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
79 |
},
|
80 |
"inputSchema" : [
|
81 |
{
|
|
|
99 |
"type" : "MultiArray"
|
100 |
}
|
101 |
],
|
102 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk1",
|
103 |
"method" : "predict"
|
104 |
}
|
105 |
]
|
Llama-2-7b-hf_chunk1.mlmodelc/model.mil
CHANGED
@@ -1,48 +1,50 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
3 |
{
|
4 |
func main<ios16>(tensor<int32, [1]> full_sequence_length, tensor<int32, [1, 64]> input_ids) {
|
5 |
tensor<int32, [1]> T = const()[name = tensor<string, []>("T"), val = tensor<int32, [1]>([64])];
|
6 |
-
tensor<int32, []>
|
7 |
-
tensor<int32, []>
|
8 |
tensor<fp16, [32000, 4096]> wte_weight_to_fp16 = const()[name = tensor<string, []>("wte_weight_to_fp16"), val = tensor<fp16, [32000, 4096]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
9 |
-
tensor<fp16, [1, 64, 4096]>
|
10 |
-
tensor<int32, [3]>
|
11 |
-
tensor<int32, [
|
12 |
-
tensor<fp16, [1, 4096, 64]>
|
13 |
-
tensor<fp16, [1, 4096,
|
14 |
tensor<int32, [1]> pos_offset = sub(x = T, y = full_sequence_length)[name = tensor<string, []>("pos_offset")];
|
15 |
-
tensor<int32, [64]>
|
16 |
-
tensor<int32, [64]> input_pos_1 = sub(x =
|
17 |
-
tensor<int32, [64]>
|
18 |
-
tensor<int32, [64]> input_pos = maximum(x = input_pos_1, y =
|
19 |
-
tensor<int32, []>
|
20 |
-
tensor<int32, []>
|
21 |
-
tensor<fp16, [128, 512]>
|
22 |
-
tensor<fp16, [128, 64]> cos = gather(axis =
|
23 |
-
tensor<int32, []>
|
24 |
-
tensor<int32, []>
|
25 |
-
tensor<fp16, [128, 512]>
|
26 |
-
tensor<fp16, [128, 64]> sin = gather(axis =
|
27 |
-
tensor<int32, [64, 1]>
|
28 |
-
tensor<bool, [64, 1]>
|
29 |
-
tensor<int32, [2]>
|
30 |
-
tensor<bool, [64, 512]>
|
31 |
tensor<fp16, [64, 512]> all_mask_to_fp16 = const()[name = tensor<string, []>("all_mask_to_fp16"), val = tensor<fp16, [64, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262406400)))];
|
32 |
tensor<fp16, [64, 512]> m_1_to_fp16 = const()[name = tensor<string, []>("m_1_to_fp16"), val = tensor<fp16, [64, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262472000)))];
|
33 |
-
tensor<fp16, [64, 512]> m_3_cast_fp16 = select(a = all_mask_to_fp16, b = m_1_to_fp16, cond =
|
34 |
-
tensor<int32, [512]>
|
35 |
-
tensor<int32, []>
|
36 |
-
tensor<int32, [1]>
|
37 |
-
tensor<bool, [512]>
|
38 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
39 |
-
tensor<bool, [1, 512]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x =
|
40 |
-
tensor<int32, [2]>
|
41 |
-
tensor<bool, [64, 512]>
|
42 |
-
tensor<fp16, [64, 512]> m_cast_fp16 = select(a = all_mask_to_fp16, b = m_3_cast_fp16, cond =
|
43 |
-
tensor<int32, [1]>
|
44 |
-
tensor<fp16, [1, 64, 512]>
|
45 |
-
tensor<int32, [1]>
|
46 |
-
tensor<fp16, [1, 1, 64, 512]>
|
|
|
|
|
47 |
} -> (x, cos, sin, mask);
|
48 |
}
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.1.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b1"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<int32, [1]> full_sequence_length, tensor<int32, [1, 64]> input_ids) {
|
5 |
tensor<int32, [1]> T = const()[name = tensor<string, []>("T"), val = tensor<int32, [1]>([64])];
|
6 |
+
tensor<int32, []> x_1_axis_0 = const()[name = tensor<string, []>("x_1_axis_0"), val = tensor<int32, []>(0)];
|
7 |
+
tensor<int32, []> x_1_batch_dims_0 = const()[name = tensor<string, []>("x_1_batch_dims_0"), val = tensor<int32, []>(0)];
|
8 |
tensor<fp16, [32000, 4096]> wte_weight_to_fp16 = const()[name = tensor<string, []>("wte_weight_to_fp16"), val = tensor<fp16, [32000, 4096]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
9 |
+
tensor<fp16, [1, 64, 4096]> x_1_cast_fp16 = gather(axis = x_1_axis_0, batch_dims = x_1_batch_dims_0, indices = input_ids, x = wte_weight_to_fp16)[name = tensor<string, []>("x_1_cast_fp16")];
|
10 |
+
tensor<int32, [3]> x_perm_0 = const()[name = tensor<string, []>("x_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
11 |
+
tensor<int32, [4]> var_27 = const()[name = tensor<string, []>("op_27"), val = tensor<int32, [4]>([1, 4096, -1, 8])];
|
12 |
+
tensor<fp16, [1, 4096, 64]> x_cast_fp16 = transpose(perm = x_perm_0, x = x_1_cast_fp16)[name = tensor<string, []>("transpose_1")];
|
13 |
+
tensor<fp16, [1, 4096, 8, 8]> x = reshape(shape = var_27, x = x_cast_fp16)[name = tensor<string, []>("op_28_cast_fp16")];
|
14 |
tensor<int32, [1]> pos_offset = sub(x = T, y = full_sequence_length)[name = tensor<string, []>("pos_offset")];
|
15 |
+
tensor<int32, [64]> var_36 = const()[name = tensor<string, []>("op_36"), val = tensor<int32, [64]>([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63])];
|
16 |
+
tensor<int32, [64]> input_pos_1 = sub(x = var_36, y = pos_offset)[name = tensor<string, []>("input_pos_1")];
|
17 |
+
tensor<int32, [64]> var_44 = const()[name = tensor<string, []>("op_44"), val = tensor<int32, [64]>([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])];
|
18 |
+
tensor<int32, [64]> input_pos = maximum(x = input_pos_1, y = var_44)[name = tensor<string, []>("input_pos")];
|
19 |
+
tensor<int32, []> var_55 = const()[name = tensor<string, []>("op_55"), val = tensor<int32, []>(1)];
|
20 |
+
tensor<int32, []> var_56_batch_dims_0 = const()[name = tensor<string, []>("op_56_batch_dims_0"), val = tensor<int32, []>(0)];
|
21 |
+
tensor<fp16, [128, 512]> var_54_to_fp16 = const()[name = tensor<string, []>("op_54_to_fp16"), val = tensor<fp16, [128, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262144128)))];
|
22 |
+
tensor<fp16, [128, 64]> cos = gather(axis = var_55, batch_dims = var_56_batch_dims_0, indices = input_pos, x = var_54_to_fp16)[name = tensor<string, []>("op_56_cast_fp16")];
|
23 |
+
tensor<int32, []> var_66 = const()[name = tensor<string, []>("op_66"), val = tensor<int32, []>(1)];
|
24 |
+
tensor<int32, []> var_67_batch_dims_0 = const()[name = tensor<string, []>("op_67_batch_dims_0"), val = tensor<int32, []>(0)];
|
25 |
+
tensor<fp16, [128, 512]> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, [128, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262275264)))];
|
26 |
+
tensor<fp16, [128, 64]> sin = gather(axis = var_66, batch_dims = var_67_batch_dims_0, indices = input_pos, x = var_65_to_fp16)[name = tensor<string, []>("op_67_cast_fp16")];
|
27 |
+
tensor<int32, [64, 1]> var_102 = const()[name = tensor<string, []>("op_102"), val = tensor<int32, [64, 1]>([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63]])];
|
28 |
+
tensor<bool, [64, 1]> var_105 = less(x = var_102, y = pos_offset)[name = tensor<string, []>("op_105")];
|
29 |
+
tensor<int32, [2]> var_105_after_broadcast_reps_0 = const()[name = tensor<string, []>("op_105_after_broadcast_reps_0"), val = tensor<int32, [2]>([1, 512])];
|
30 |
+
tensor<bool, [64, 512]> var_105_after_broadcast = tile(reps = var_105_after_broadcast_reps_0, x = var_105)[name = tensor<string, []>("op_105_after_broadcast")];
|
31 |
tensor<fp16, [64, 512]> all_mask_to_fp16 = const()[name = tensor<string, []>("all_mask_to_fp16"), val = tensor<fp16, [64, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262406400)))];
|
32 |
tensor<fp16, [64, 512]> m_1_to_fp16 = const()[name = tensor<string, []>("m_1_to_fp16"), val = tensor<fp16, [64, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(262472000)))];
|
33 |
+
tensor<fp16, [64, 512]> m_3_cast_fp16 = select(a = all_mask_to_fp16, b = m_1_to_fp16, cond = var_105_after_broadcast)[name = tensor<string, []>("m_3_cast_fp16")];
|
34 |
+
tensor<int32, [512]> var_115 = const()[name = tensor<string, []>("op_115"), val = tensor<int32, [512]>([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511])];
|
35 |
+
tensor<int32, []> var_116 = const()[name = tensor<string, []>("op_116"), val = tensor<int32, []>(512)];
|
36 |
+
tensor<int32, [1]> var_118 = sub(x = var_116, y = full_sequence_length)[name = tensor<string, []>("op_118")];
|
37 |
+
tensor<bool, [512]> var_119 = less(x = var_115, y = var_118)[name = tensor<string, []>("op_119")];
|
38 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
39 |
+
tensor<bool, [1, 512]> expand_dims_0 = expand_dims(axes = expand_dims_0_axes_0, x = var_119)[name = tensor<string, []>("expand_dims_0")];
|
40 |
+
tensor<int32, [2]> var_119_after_broadcast_reps_0 = const()[name = tensor<string, []>("op_119_after_broadcast_reps_0"), val = tensor<int32, [2]>([64, 1])];
|
41 |
+
tensor<bool, [64, 512]> var_119_after_broadcast = tile(reps = var_119_after_broadcast_reps_0, x = expand_dims_0)[name = tensor<string, []>("op_119_after_broadcast")];
|
42 |
+
tensor<fp16, [64, 512]> m_cast_fp16 = select(a = all_mask_to_fp16, b = m_3_cast_fp16, cond = var_119_after_broadcast)[name = tensor<string, []>("m_cast_fp16")];
|
43 |
+
tensor<int32, [1]> var_122_axes_0 = const()[name = tensor<string, []>("op_122_axes_0"), val = tensor<int32, [1]>([0])];
|
44 |
+
tensor<fp16, [1, 64, 512]> var_122_cast_fp16 = expand_dims(axes = var_122_axes_0, x = m_cast_fp16)[name = tensor<string, []>("op_122_cast_fp16")];
|
45 |
+
tensor<int32, [1]> var_124_axes_0 = const()[name = tensor<string, []>("op_124_axes_0"), val = tensor<int32, [1]>([0])];
|
46 |
+
tensor<fp16, [1, 1, 64, 512]> var_124_cast_fp16 = expand_dims(axes = var_124_axes_0, x = var_122_cast_fp16)[name = tensor<string, []>("op_124_cast_fp16")];
|
47 |
+
tensor<int32, [4]> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, [4]>([0, 3, 1, 2])];
|
48 |
+
tensor<fp16, [1, 512, 1, 64]> mask = transpose(perm = var_129, x = var_124_cast_fp16)[name = tensor<string, []>("transpose_0")];
|
49 |
} -> (x, cos, sin, mask);
|
50 |
}
|
Llama-2-7b-hf_chunk1.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 262537600
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:098ec04b28e4314c7c3e9a3bf0f5ee4e7e9211d49ed367953c5d0fbc0f36d13c
|
3 |
size 262537600
|
Llama-2-7b-hf_chunk10.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk10.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fdd5ca1ab176b28ed33e53920cb3ef99dac8b0e220af01536a3969d5d83f1a5
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk10.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk10",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk10.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk10.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d316f3ae860ed5659a53ae6c81a8e8a352eaa73244c08f3fdbbfe4fcdd8f1be2
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk11.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk11.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fdd5ca1ab176b28ed33e53920cb3ef99dac8b0e220af01536a3969d5d83f1a5
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk11.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk11",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk11.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk11.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baecb2f13f8f1adf620bb882d56cf3b6adbc1fe32d9d07645fb8bdfe81e55d9d
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk12.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e2c7d4f699871cef135bb77d11029f37679666a0b22b160dcd45a6ef9be60c9
|
3 |
size 243
|
Llama-2-7b-hf_chunk12.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8148a192361b8ecec063ca1450af657313ff478d464c1737f0a57502021593a7
|
3 |
+
size 653
|
Llama-2-7b-hf_chunk12.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_v_cache_0",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_1",
|
54 |
"type" : "MultiArray"
|
55 |
}
|
@@ -59,17 +59,18 @@
|
|
59 |
],
|
60 |
"specificationVersion" : 7,
|
61 |
"mlProgramOperationTypeHistogram" : {
|
62 |
-
"Concat" :
|
63 |
-
"Ios16.
|
64 |
-
"
|
65 |
-
"SliceByIndex" : 8,
|
66 |
"Ios16.constexprLutToDense" : 14,
|
|
|
|
|
67 |
"Ios16.conv" : 14,
|
68 |
-
"Ios16.add" :
|
69 |
-
"Ios16.
|
70 |
-
"Ios16.
|
71 |
-
"Ios16.
|
72 |
-
"Ios16.reshape" :
|
73 |
"Ios16.silu" : 2
|
74 |
},
|
75 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -87,17 +88,17 @@
|
|
87 |
},
|
88 |
"userDefinedMetadata" : {
|
89 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
90 |
-
"com.github.apple.coremltools.
|
91 |
-
"com.github.apple.coremltools.
|
92 |
},
|
93 |
"inputSchema" : [
|
94 |
{
|
95 |
"hasShapeFlexibility" : "0",
|
96 |
"isOptional" : "0",
|
97 |
"dataType" : "Float16",
|
98 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
99 |
"shortDescription" : "",
|
100 |
-
"shape" : "[1, 4096,
|
101 |
"name" : "x",
|
102 |
"type" : "MultiArray"
|
103 |
},
|
@@ -125,9 +126,9 @@
|
|
125 |
"hasShapeFlexibility" : "0",
|
126 |
"isOptional" : "0",
|
127 |
"dataType" : "Float16",
|
128 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
129 |
"shortDescription" : "",
|
130 |
-
"shape" : "[1, 1, 64
|
131 |
"name" : "mask",
|
132 |
"type" : "MultiArray"
|
133 |
},
|
@@ -135,9 +136,9 @@
|
|
135 |
"hasShapeFlexibility" : "0",
|
136 |
"isOptional" : "1",
|
137 |
"dataType" : "Float16",
|
138 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
139 |
"shortDescription" : "",
|
140 |
-
"shape" : "[1,
|
141 |
"name" : "k_cache_0",
|
142 |
"type" : "MultiArray"
|
143 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "1",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1,
|
151 |
"name" : "v_cache_0",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_1",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,14 +166,14 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_1",
|
172 |
"type" : "MultiArray"
|
173 |
}
|
174 |
],
|
175 |
-
"generatedClassName" : "
|
176 |
"method" : "predict"
|
177 |
}
|
178 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 4096, 1, 64]",
|
43 |
"name" : "new_v_cache_0",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_1",
|
54 |
"type" : "MultiArray"
|
55 |
}
|
|
|
59 |
],
|
60 |
"specificationVersion" : 7,
|
61 |
"mlProgramOperationTypeHistogram" : {
|
62 |
+
"Concat" : 14,
|
63 |
+
"Ios16.mul" : 100,
|
64 |
+
"SliceByIndex" : 200,
|
|
|
65 |
"Ios16.constexprLutToDense" : 14,
|
66 |
+
"Transpose" : 2,
|
67 |
+
"Ios16.einsum" : 128,
|
68 |
"Ios16.conv" : 14,
|
69 |
+
"Ios16.add" : 72,
|
70 |
+
"Ios16.realDiv" : 4,
|
71 |
+
"Ios16.softmax" : 64,
|
72 |
+
"Ios16.reduceL2Norm" : 4,
|
73 |
+
"Ios16.reshape" : 14,
|
74 |
"Ios16.silu" : 2
|
75 |
},
|
76 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
88 |
},
|
89 |
"userDefinedMetadata" : {
|
90 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
91 |
+
"com.github.apple.coremltools.version" : "8.0b1",
|
92 |
+
"com.github.apple.coremltools.source" : "torch==2.1.0"
|
93 |
},
|
94 |
"inputSchema" : [
|
95 |
{
|
96 |
"hasShapeFlexibility" : "0",
|
97 |
"isOptional" : "0",
|
98 |
"dataType" : "Float16",
|
99 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
100 |
"shortDescription" : "",
|
101 |
+
"shape" : "[1, 4096, 8, 8]",
|
102 |
"name" : "x",
|
103 |
"type" : "MultiArray"
|
104 |
},
|
|
|
126 |
"hasShapeFlexibility" : "0",
|
127 |
"isOptional" : "0",
|
128 |
"dataType" : "Float16",
|
129 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
130 |
"shortDescription" : "",
|
131 |
+
"shape" : "[1, 512, 1, 64]",
|
132 |
"name" : "mask",
|
133 |
"type" : "MultiArray"
|
134 |
},
|
|
|
136 |
"hasShapeFlexibility" : "0",
|
137 |
"isOptional" : "1",
|
138 |
"dataType" : "Float16",
|
139 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
140 |
"shortDescription" : "",
|
141 |
+
"shape" : "[1, 448, 1, 4096]",
|
142 |
"name" : "k_cache_0",
|
143 |
"type" : "MultiArray"
|
144 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "1",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 4096, 1, 448]",
|
152 |
"name" : "v_cache_0",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_1",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_1",
|
173 |
"type" : "MultiArray"
|
174 |
}
|
175 |
],
|
176 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk12",
|
177 |
"method" : "predict"
|
178 |
}
|
179 |
]
|
Llama-2-7b-hf_chunk12.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk12.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8083e76257cb1c212c04f16e970bef147d1f06e4ccdbbe8d9c5f0ffebeed6d34
|
3 |
+
size 202582592
|
Llama-2-7b-hf_chunk13.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe22d6d09bcc30eac1d0d0e786aff8bd12a35552070af919e88c7c9bcac0405
|
3 |
size 243
|
Llama-2-7b-hf_chunk13.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcd130ddb6d42e6468c1c9ebc7cb2472a42812a6e04950ef5cf75498e5885fcc
|
3 |
+
size 311
|
Llama-2-7b-hf_chunk13.mlmodelc/metadata.json
CHANGED
@@ -19,15 +19,14 @@
|
|
19 |
],
|
20 |
"specificationVersion" : 7,
|
21 |
"mlProgramOperationTypeHistogram" : {
|
22 |
-
"Concat" :
|
23 |
-
"Ios16.
|
24 |
-
"
|
25 |
-
"Ios16.rsqrt" : 1,
|
26 |
"Transpose" : 1,
|
27 |
-
"Ios16.reshape" :
|
28 |
-
"Ios16.reduceMean" : 1,
|
29 |
"Ios16.matmul" : 2,
|
30 |
-
"
|
|
|
31 |
},
|
32 |
"computePrecision" : "Mixed (Float16, Int32)",
|
33 |
"isUpdatable" : "0",
|
@@ -45,21 +44,21 @@
|
|
45 |
"userDefinedMetadata" : {
|
46 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
47 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
48 |
-
"com.github.apple.coremltools.version" : "
|
49 |
},
|
50 |
"inputSchema" : [
|
51 |
{
|
52 |
"hasShapeFlexibility" : "0",
|
53 |
"isOptional" : "0",
|
54 |
"dataType" : "Float16",
|
55 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
56 |
"shortDescription" : "",
|
57 |
-
"shape" : "[1, 4096,
|
58 |
"name" : "x",
|
59 |
"type" : "MultiArray"
|
60 |
}
|
61 |
],
|
62 |
-
"generatedClassName" : "
|
63 |
"method" : "predict"
|
64 |
}
|
65 |
]
|
|
|
19 |
],
|
20 |
"specificationVersion" : 7,
|
21 |
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Concat" : 2,
|
23 |
+
"Ios16.mul" : 2,
|
24 |
+
"Squeeze" : 1,
|
|
|
25 |
"Transpose" : 1,
|
26 |
+
"Ios16.reshape" : 4,
|
|
|
27 |
"Ios16.matmul" : 2,
|
28 |
+
"Ios16.realDiv" : 1,
|
29 |
+
"Ios16.reduceL2Norm" : 1
|
30 |
},
|
31 |
"computePrecision" : "Mixed (Float16, Int32)",
|
32 |
"isUpdatable" : "0",
|
|
|
44 |
"userDefinedMetadata" : {
|
45 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
46 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
47 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
48 |
},
|
49 |
"inputSchema" : [
|
50 |
{
|
51 |
"hasShapeFlexibility" : "0",
|
52 |
"isOptional" : "0",
|
53 |
"dataType" : "Float16",
|
54 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
55 |
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 4096, 8, 8]",
|
57 |
"name" : "x",
|
58 |
"type" : "MultiArray"
|
59 |
}
|
60 |
],
|
61 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk13",
|
62 |
"method" : "predict"
|
63 |
}
|
64 |
]
|
Llama-2-7b-hf_chunk13.mlmodelc/model.mil
CHANGED
@@ -1,38 +1,41 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
3 |
{
|
4 |
-
func main<ios16>(tensor<fp16, [1, 4096,
|
5 |
tensor<bool, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<bool, []>(true)];
|
6 |
-
tensor<
|
7 |
-
tensor<
|
8 |
-
tensor<fp16, [1, 1,
|
9 |
-
tensor<fp16, []>
|
10 |
-
tensor<
|
11 |
-
tensor<fp16, []>
|
12 |
-
tensor<fp16, [1,
|
13 |
-
tensor<fp16, [
|
14 |
-
tensor<fp16, [1, 4096,
|
15 |
-
tensor<fp16, [1, 4096, 1,
|
16 |
-
tensor<
|
17 |
-
tensor<
|
18 |
-
tensor<
|
|
|
|
|
|
|
19 |
tensor<int32, [2]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<int32, [2]>([64, 4096])];
|
20 |
-
tensor<fp16, [1, 64, 4096]>
|
21 |
-
tensor<fp16, [64, 4096]> reshape_0_cast_fp16 = reshape(shape = concat_4, x =
|
22 |
tensor<bool, []> matmul_0_transpose_x_0 = const()[name = tensor<string, []>("matmul_0_transpose_x_0"), val = tensor<bool, []>(false)];
|
23 |
tensor<bool, []> matmul_0_transpose_y_0 = const()[name = tensor<string, []>("matmul_0_transpose_y_0"), val = tensor<bool, []>(false)];
|
24 |
-
tensor<fp16, [4096, 16384]> transpose_1_to_fp16 = const()[name = tensor<string, []>("transpose_1_to_fp16"), val = tensor<fp16, [4096, 16384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(
|
25 |
tensor<fp16, [64, 16384]> matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_1_to_fp16)[name = tensor<string, []>("matmul_0_cast_fp16")];
|
26 |
tensor<int32, [3]> concat_8 = const()[name = tensor<string, []>("concat_8"), val = tensor<int32, [3]>([1, 64, 16384])];
|
27 |
tensor<fp16, [1, 64, 16384]> reshape_2_cast_fp16 = reshape(shape = concat_8, x = matmul_0_cast_fp16)[name = tensor<string, []>("reshape_2_cast_fp16")];
|
28 |
tensor<bool, []> matmul_1_transpose_x_0 = const()[name = tensor<string, []>("matmul_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
29 |
tensor<bool, []> matmul_1_transpose_y_0 = const()[name = tensor<string, []>("matmul_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
30 |
-
tensor<fp16, [4096, 15616]> transpose_3_to_fp16 = const()[name = tensor<string, []>("transpose_3_to_fp16"), val = tensor<fp16, [4096, 15616]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(
|
31 |
tensor<fp16, [64, 15616]> matmul_1_cast_fp16 = matmul(transpose_x = matmul_1_transpose_x_0, transpose_y = matmul_1_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_3_to_fp16)[name = tensor<string, []>("matmul_1_cast_fp16")];
|
32 |
tensor<int32, [3]> concat_16 = const()[name = tensor<string, []>("concat_16"), val = tensor<int32, [3]>([1, 64, 15616])];
|
33 |
tensor<fp16, [1, 64, 15616]> reshape_5_cast_fp16 = reshape(shape = concat_16, x = matmul_1_cast_fp16)[name = tensor<string, []>("reshape_5_cast_fp16")];
|
34 |
-
tensor<int32, []>
|
35 |
-
tensor<bool, []>
|
36 |
-
tensor<fp16, [1, 64, 32000]> logits = concat(axis =
|
37 |
} -> (logits);
|
38 |
}
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.1.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b1"}})]
|
3 |
{
|
4 |
+
func main<ios16>(tensor<fp16, [1, 4096, 8, 8]> x) {
|
5 |
tensor<bool, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<bool, []>(true)];
|
6 |
+
tensor<int32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<int32, []>(1)];
|
7 |
+
tensor<bool, []> x_eps_interleave_0 = const()[name = tensor<string, []>("x_eps_interleave_0"), val = tensor<bool, []>(false)];
|
8 |
+
tensor<fp16, [1, 1, 8, 8]> eps_chan_to_fp16 = const()[name = tensor<string, []>("eps_chan_to_fp16"), val = tensor<fp16, [1, 1, 8, 8]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
9 |
+
tensor<fp16, [1, 4097, 8, 8]> x_eps_cast_fp16 = concat(axis = var_9, interleave = x_eps_interleave_0, values = (x, eps_chan_to_fp16))[name = tensor<string, []>("x_eps_cast_fp16")];
|
10 |
+
tensor<int32, [1]> norm_x_axes_0 = const()[name = tensor<string, []>("norm_x_axes_0"), val = tensor<int32, [1]>([1])];
|
11 |
+
tensor<fp16, [1, 1, 8, 8]> norm_x_cast_fp16 = reduce_l2_norm(axes = norm_x_axes_0, keep_dims = var_6, x = x_eps_cast_fp16)[name = tensor<string, []>("norm_x_cast_fp16")];
|
12 |
+
tensor<fp16, [1, 4096, 8, 8]> x_normed_1_cast_fp16 = real_div(x = x, y = norm_x_cast_fp16)[name = tensor<string, []>("x_normed_1_cast_fp16")];
|
13 |
+
tensor<fp16, []> var_34_to_fp16 = const()[name = tensor<string, []>("op_34_to_fp16"), val = tensor<fp16, []>(0x1p+6)];
|
14 |
+
tensor<fp16, [1, 4096, 8, 8]> x_normed_3_cast_fp16 = mul(x = x_normed_1_cast_fp16, y = var_34_to_fp16)[name = tensor<string, []>("x_normed_3_cast_fp16")];
|
15 |
+
tensor<fp16, [1, 4096, 1, 1]> ln_f_weight_to_fp16 = const()[name = tensor<string, []>("ln_f_weight_to_fp16"), val = tensor<fp16, [1, 4096, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(256)))];
|
16 |
+
tensor<fp16, [1, 4096, 8, 8]> x_5_cast_fp16 = mul(x = x_normed_3_cast_fp16, y = ln_f_weight_to_fp16)[name = tensor<string, []>("x_5_cast_fp16")];
|
17 |
+
tensor<int32, [4]> var_48 = const()[name = tensor<string, []>("op_48"), val = tensor<int32, [4]>([1, 4096, 1, -1])];
|
18 |
+
tensor<fp16, [1, 4096, 1, 64]> x_cast_fp16 = reshape(shape = var_48, x = x_5_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
|
19 |
+
tensor<int32, [1]> var_51_axes_0 = const()[name = tensor<string, []>("op_51_axes_0"), val = tensor<int32, [1]>([2])];
|
20 |
+
tensor<fp16, [1, 4096, 64]> var_51_cast_fp16 = squeeze(axes = var_51_axes_0, x = x_cast_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
|
21 |
+
tensor<int32, [3]> var_54_perm_0 = const()[name = tensor<string, []>("op_54_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
|
22 |
tensor<int32, [2]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<int32, [2]>([64, 4096])];
|
23 |
+
tensor<fp16, [1, 64, 4096]> var_54_cast_fp16 = transpose(perm = var_54_perm_0, x = var_51_cast_fp16)[name = tensor<string, []>("transpose_4")];
|
24 |
+
tensor<fp16, [64, 4096]> reshape_0_cast_fp16 = reshape(shape = concat_4, x = var_54_cast_fp16)[name = tensor<string, []>("reshape_0_cast_fp16")];
|
25 |
tensor<bool, []> matmul_0_transpose_x_0 = const()[name = tensor<string, []>("matmul_0_transpose_x_0"), val = tensor<bool, []>(false)];
|
26 |
tensor<bool, []> matmul_0_transpose_y_0 = const()[name = tensor<string, []>("matmul_0_transpose_y_0"), val = tensor<bool, []>(false)];
|
27 |
+
tensor<fp16, [4096, 16384]> transpose_1_to_fp16 = const()[name = tensor<string, []>("transpose_1_to_fp16"), val = tensor<fp16, [4096, 16384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8512)))];
|
28 |
tensor<fp16, [64, 16384]> matmul_0_cast_fp16 = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_1_to_fp16)[name = tensor<string, []>("matmul_0_cast_fp16")];
|
29 |
tensor<int32, [3]> concat_8 = const()[name = tensor<string, []>("concat_8"), val = tensor<int32, [3]>([1, 64, 16384])];
|
30 |
tensor<fp16, [1, 64, 16384]> reshape_2_cast_fp16 = reshape(shape = concat_8, x = matmul_0_cast_fp16)[name = tensor<string, []>("reshape_2_cast_fp16")];
|
31 |
tensor<bool, []> matmul_1_transpose_x_0 = const()[name = tensor<string, []>("matmul_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
32 |
tensor<bool, []> matmul_1_transpose_y_0 = const()[name = tensor<string, []>("matmul_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
33 |
+
tensor<fp16, [4096, 15616]> transpose_3_to_fp16 = const()[name = tensor<string, []>("transpose_3_to_fp16"), val = tensor<fp16, [4096, 15616]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134226304)))];
|
34 |
tensor<fp16, [64, 15616]> matmul_1_cast_fp16 = matmul(transpose_x = matmul_1_transpose_x_0, transpose_y = matmul_1_transpose_y_0, x = reshape_0_cast_fp16, y = transpose_3_to_fp16)[name = tensor<string, []>("matmul_1_cast_fp16")];
|
35 |
tensor<int32, [3]> concat_16 = const()[name = tensor<string, []>("concat_16"), val = tensor<int32, [3]>([1, 64, 15616])];
|
36 |
tensor<fp16, [1, 64, 15616]> reshape_5_cast_fp16 = reshape(shape = concat_16, x = matmul_1_cast_fp16)[name = tensor<string, []>("reshape_5_cast_fp16")];
|
37 |
+
tensor<int32, []> var_69 = const()[name = tensor<string, []>("op_69"), val = tensor<int32, []>(-1)];
|
38 |
+
tensor<bool, []> var_70_interleave_0 = const()[name = tensor<string, []>("op_70_interleave_0"), val = tensor<bool, []>(false)];
|
39 |
+
tensor<fp16, [1, 64, 32000]> logits = concat(axis = var_69, interleave = var_70_interleave_0, values = (reshape_2_cast_fp16, reshape_5_cast_fp16))[name = tensor<string, []>("op_70_cast_fp16")];
|
40 |
} -> (logits);
|
41 |
}
|
Llama-2-7b-hf_chunk13.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a041617e42d7a89d6d1e60a90971f24f8fa62634d1c5db56abd302dcf9c3398e
|
3 |
+
size 262152640
|
Llama-2-7b-hf_chunk2.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk2.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed0dd15fc572d2cc2ec19b317245622b4256a8737cc9ba114529e925d3bf42f2
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk2.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk2",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk2.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk2.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:986f04c4d84fa222e29a878e94d10efdb5cb893883201ece3a0a060f9ab5066e
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk3.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk3.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fdd5ca1ab176b28ed33e53920cb3ef99dac8b0e220af01536a3969d5d83f1a5
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk3.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk3",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk3.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk3.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0afd4ddd01084d67eec0c37c977b0ac2be78fe40cf7afcbe707e988e4060ffec
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk4.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk4.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fdd5ca1ab176b28ed33e53920cb3ef99dac8b0e220af01536a3969d5d83f1a5
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk4.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk4",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk4.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk4.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d368880511e37c9082ff760946ff94910ec04d00ebd70f03242588bceb67a685
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk5.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk5.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed0dd15fc572d2cc2ec19b317245622b4256a8737cc9ba114529e925d3bf42f2
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk5.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk5",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk5.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk5.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d28027700ce1e1dc02bc839d431de13ae2df66b53637a7b559799adce3b84afc
|
3 |
+
size 303873856
|
Llama-2-7b-hf_chunk6.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:997c2b09d10cc368b341f867b52aac1e9325853550f47133cc48a353128e881a
|
3 |
size 243
|
Llama-2-7b-hf_chunk6.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed0dd15fc572d2cc2ec19b317245622b4256a8737cc9ba114529e925d3bf42f2
|
3 |
+
size 793
|
Llama-2-7b-hf_chunk6.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[1, 4096,
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
@@ -17,9 +17,9 @@
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
21 |
"shortDescription" : "",
|
22 |
-
"shape" : "[1,
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
@@ -27,9 +27,9 @@
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
31 |
"shortDescription" : "",
|
32 |
-
"shape" : "[1,
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
@@ -37,9 +37,9 @@
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
41 |
"shortDescription" : "",
|
42 |
-
"shape" : "[1,
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
@@ -47,9 +47,9 @@
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
51 |
"shortDescription" : "",
|
52 |
-
"shape" : "[1,
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
@@ -57,9 +57,9 @@
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
61 |
"shortDescription" : "",
|
62 |
-
"shape" : "[1,
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
@@ -67,9 +67,9 @@
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
71 |
"shortDescription" : "",
|
72 |
-
"shape" : "[1,
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
@@ -79,17 +79,18 @@
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
-
"Concat" :
|
83 |
-
"Ios16.
|
84 |
-
"
|
85 |
-
"SliceByIndex" : 12,
|
86 |
"Ios16.constexprLutToDense" : 21,
|
|
|
|
|
87 |
"Ios16.conv" : 21,
|
88 |
-
"Ios16.add" :
|
89 |
-
"Ios16.
|
90 |
-
"Ios16.
|
91 |
-
"Ios16.
|
92 |
-
"Ios16.reshape" :
|
93 |
"Ios16.silu" : 3
|
94 |
},
|
95 |
"computePrecision" : "Mixed (Float16, Int32)",
|
@@ -108,16 +109,16 @@
|
|
108 |
"userDefinedMetadata" : {
|
109 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
110 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
111 |
-
"com.github.apple.coremltools.version" : "
|
112 |
},
|
113 |
"inputSchema" : [
|
114 |
{
|
115 |
"hasShapeFlexibility" : "0",
|
116 |
"isOptional" : "0",
|
117 |
"dataType" : "Float16",
|
118 |
-
"formattedType" : "MultiArray (Float16 1 × 4096 ×
|
119 |
"shortDescription" : "",
|
120 |
-
"shape" : "[1, 4096,
|
121 |
"name" : "x",
|
122 |
"type" : "MultiArray"
|
123 |
},
|
@@ -145,9 +146,9 @@
|
|
145 |
"hasShapeFlexibility" : "0",
|
146 |
"isOptional" : "0",
|
147 |
"dataType" : "Float16",
|
148 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
149 |
"shortDescription" : "",
|
150 |
-
"shape" : "[1, 1, 64
|
151 |
"name" : "mask",
|
152 |
"type" : "MultiArray"
|
153 |
},
|
@@ -155,9 +156,9 @@
|
|
155 |
"hasShapeFlexibility" : "0",
|
156 |
"isOptional" : "1",
|
157 |
"dataType" : "Float16",
|
158 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
159 |
"shortDescription" : "",
|
160 |
-
"shape" : "[1,
|
161 |
"name" : "k_cache_0",
|
162 |
"type" : "MultiArray"
|
163 |
},
|
@@ -165,9 +166,9 @@
|
|
165 |
"hasShapeFlexibility" : "0",
|
166 |
"isOptional" : "1",
|
167 |
"dataType" : "Float16",
|
168 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
169 |
"shortDescription" : "",
|
170 |
-
"shape" : "[1,
|
171 |
"name" : "v_cache_0",
|
172 |
"type" : "MultiArray"
|
173 |
},
|
@@ -175,9 +176,9 @@
|
|
175 |
"hasShapeFlexibility" : "0",
|
176 |
"isOptional" : "1",
|
177 |
"dataType" : "Float16",
|
178 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
179 |
"shortDescription" : "",
|
180 |
-
"shape" : "[1,
|
181 |
"name" : "k_cache_1",
|
182 |
"type" : "MultiArray"
|
183 |
},
|
@@ -185,9 +186,9 @@
|
|
185 |
"hasShapeFlexibility" : "0",
|
186 |
"isOptional" : "1",
|
187 |
"dataType" : "Float16",
|
188 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
189 |
"shortDescription" : "",
|
190 |
-
"shape" : "[1,
|
191 |
"name" : "v_cache_1",
|
192 |
"type" : "MultiArray"
|
193 |
},
|
@@ -195,9 +196,9 @@
|
|
195 |
"hasShapeFlexibility" : "0",
|
196 |
"isOptional" : "1",
|
197 |
"dataType" : "Float16",
|
198 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
199 |
"shortDescription" : "",
|
200 |
-
"shape" : "[1,
|
201 |
"name" : "k_cache_2",
|
202 |
"type" : "MultiArray"
|
203 |
},
|
@@ -205,14 +206,14 @@
|
|
205 |
"hasShapeFlexibility" : "0",
|
206 |
"isOptional" : "1",
|
207 |
"dataType" : "Float16",
|
208 |
-
"formattedType" : "MultiArray (Float16 1 ×
|
209 |
"shortDescription" : "",
|
210 |
-
"shape" : "[1,
|
211 |
"name" : "v_cache_2",
|
212 |
"type" : "MultiArray"
|
213 |
}
|
214 |
],
|
215 |
-
"generatedClassName" : "
|
216 |
"method" : "predict"
|
217 |
}
|
218 |
]
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 4096, 8, 8]",
|
13 |
"name" : "new_x",
|
14 |
"type" : "MultiArray"
|
15 |
},
|
|
|
17 |
"hasShapeFlexibility" : "0",
|
18 |
"isOptional" : "0",
|
19 |
"dataType" : "Float16",
|
20 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
21 |
"shortDescription" : "",
|
22 |
+
"shape" : "[1, 64, 1, 4096]",
|
23 |
"name" : "new_k_cache_0",
|
24 |
"type" : "MultiArray"
|
25 |
},
|
|
|
27 |
"hasShapeFlexibility" : "0",
|
28 |
"isOptional" : "0",
|
29 |
"dataType" : "Float16",
|
30 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
31 |
"shortDescription" : "",
|
32 |
+
"shape" : "[1, 64, 1, 4096]",
|
33 |
"name" : "new_k_cache_1",
|
34 |
"type" : "MultiArray"
|
35 |
},
|
|
|
37 |
"hasShapeFlexibility" : "0",
|
38 |
"isOptional" : "0",
|
39 |
"dataType" : "Float16",
|
40 |
+
"formattedType" : "MultiArray (Float16 1 × 64 × 1 × 4096)",
|
41 |
"shortDescription" : "",
|
42 |
+
"shape" : "[1, 64, 1, 4096]",
|
43 |
"name" : "new_k_cache_2",
|
44 |
"type" : "MultiArray"
|
45 |
},
|
|
|
47 |
"hasShapeFlexibility" : "0",
|
48 |
"isOptional" : "0",
|
49 |
"dataType" : "Float16",
|
50 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
51 |
"shortDescription" : "",
|
52 |
+
"shape" : "[1, 4096, 1, 64]",
|
53 |
"name" : "new_v_cache_0",
|
54 |
"type" : "MultiArray"
|
55 |
},
|
|
|
57 |
"hasShapeFlexibility" : "0",
|
58 |
"isOptional" : "0",
|
59 |
"dataType" : "Float16",
|
60 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
61 |
"shortDescription" : "",
|
62 |
+
"shape" : "[1, 4096, 1, 64]",
|
63 |
"name" : "new_v_cache_1",
|
64 |
"type" : "MultiArray"
|
65 |
},
|
|
|
67 |
"hasShapeFlexibility" : "0",
|
68 |
"isOptional" : "0",
|
69 |
"dataType" : "Float16",
|
70 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 64)",
|
71 |
"shortDescription" : "",
|
72 |
+
"shape" : "[1, 4096, 1, 64]",
|
73 |
"name" : "new_v_cache_2",
|
74 |
"type" : "MultiArray"
|
75 |
}
|
|
|
79 |
],
|
80 |
"specificationVersion" : 7,
|
81 |
"mlProgramOperationTypeHistogram" : {
|
82 |
+
"Concat" : 21,
|
83 |
+
"Ios16.mul" : 150,
|
84 |
+
"SliceByIndex" : 300,
|
|
|
85 |
"Ios16.constexprLutToDense" : 21,
|
86 |
+
"Transpose" : 3,
|
87 |
+
"Ios16.einsum" : 192,
|
88 |
"Ios16.conv" : 21,
|
89 |
+
"Ios16.add" : 108,
|
90 |
+
"Ios16.realDiv" : 6,
|
91 |
+
"Ios16.softmax" : 96,
|
92 |
+
"Ios16.reduceL2Norm" : 6,
|
93 |
+
"Ios16.reshape" : 21,
|
94 |
"Ios16.silu" : 3
|
95 |
},
|
96 |
"computePrecision" : "Mixed (Float16, Int32)",
|
|
|
109 |
"userDefinedMetadata" : {
|
110 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
111 |
"com.github.apple.coremltools.source" : "torch==2.1.0",
|
112 |
+
"com.github.apple.coremltools.version" : "8.0b1"
|
113 |
},
|
114 |
"inputSchema" : [
|
115 |
{
|
116 |
"hasShapeFlexibility" : "0",
|
117 |
"isOptional" : "0",
|
118 |
"dataType" : "Float16",
|
119 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 8 × 8)",
|
120 |
"shortDescription" : "",
|
121 |
+
"shape" : "[1, 4096, 8, 8]",
|
122 |
"name" : "x",
|
123 |
"type" : "MultiArray"
|
124 |
},
|
|
|
146 |
"hasShapeFlexibility" : "0",
|
147 |
"isOptional" : "0",
|
148 |
"dataType" : "Float16",
|
149 |
+
"formattedType" : "MultiArray (Float16 1 × 512 × 1 × 64)",
|
150 |
"shortDescription" : "",
|
151 |
+
"shape" : "[1, 512, 1, 64]",
|
152 |
"name" : "mask",
|
153 |
"type" : "MultiArray"
|
154 |
},
|
|
|
156 |
"hasShapeFlexibility" : "0",
|
157 |
"isOptional" : "1",
|
158 |
"dataType" : "Float16",
|
159 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
160 |
"shortDescription" : "",
|
161 |
+
"shape" : "[1, 448, 1, 4096]",
|
162 |
"name" : "k_cache_0",
|
163 |
"type" : "MultiArray"
|
164 |
},
|
|
|
166 |
"hasShapeFlexibility" : "0",
|
167 |
"isOptional" : "1",
|
168 |
"dataType" : "Float16",
|
169 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
170 |
"shortDescription" : "",
|
171 |
+
"shape" : "[1, 4096, 1, 448]",
|
172 |
"name" : "v_cache_0",
|
173 |
"type" : "MultiArray"
|
174 |
},
|
|
|
176 |
"hasShapeFlexibility" : "0",
|
177 |
"isOptional" : "1",
|
178 |
"dataType" : "Float16",
|
179 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
180 |
"shortDescription" : "",
|
181 |
+
"shape" : "[1, 448, 1, 4096]",
|
182 |
"name" : "k_cache_1",
|
183 |
"type" : "MultiArray"
|
184 |
},
|
|
|
186 |
"hasShapeFlexibility" : "0",
|
187 |
"isOptional" : "1",
|
188 |
"dataType" : "Float16",
|
189 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
190 |
"shortDescription" : "",
|
191 |
+
"shape" : "[1, 4096, 1, 448]",
|
192 |
"name" : "v_cache_1",
|
193 |
"type" : "MultiArray"
|
194 |
},
|
|
|
196 |
"hasShapeFlexibility" : "0",
|
197 |
"isOptional" : "1",
|
198 |
"dataType" : "Float16",
|
199 |
+
"formattedType" : "MultiArray (Float16 1 × 448 × 1 × 4096)?",
|
200 |
"shortDescription" : "",
|
201 |
+
"shape" : "[1, 448, 1, 4096]",
|
202 |
"name" : "k_cache_2",
|
203 |
"type" : "MultiArray"
|
204 |
},
|
|
|
206 |
"hasShapeFlexibility" : "0",
|
207 |
"isOptional" : "1",
|
208 |
"dataType" : "Float16",
|
209 |
+
"formattedType" : "MultiArray (Float16 1 × 4096 × 1 × 448)?",
|
210 |
"shortDescription" : "",
|
211 |
+
"shape" : "[1, 4096, 1, 448]",
|
212 |
"name" : "v_cache_2",
|
213 |
"type" : "MultiArray"
|
214 |
}
|
215 |
],
|
216 |
+
"generatedClassName" : "Llama_2_7b_hf_2024_08_09_09_54_41_chunk6",
|
217 |
"method" : "predict"
|
218 |
}
|
219 |
]
|
Llama-2-7b-hf_chunk6.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Llama-2-7b-hf_chunk6.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52ba7c726d6d195f52b6a623161d59bb42debc6a3e217eaf3f34bcd9be1b3834
|
3 |
+
size 303873856
|