smokxy commited on
Commit
345eae1
·
verified ·
1 Parent(s): c215daa

pytorch_model.bin upload/update

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:900
10
+ - loss:GISTEmbedLoss
11
+ base_model: BAAI/bge-small-en-v1.5
12
+ datasets: []
13
+ metrics:
14
+ - cosine_accuracy@1
15
+ - cosine_accuracy@5
16
+ - cosine_accuracy@10
17
+ - cosine_precision@1
18
+ - cosine_precision@5
19
+ - cosine_precision@10
20
+ - cosine_recall@1
21
+ - cosine_recall@5
22
+ - cosine_recall@10
23
+ - cosine_ndcg@5
24
+ - cosine_ndcg@10
25
+ - cosine_ndcg@100
26
+ - cosine_mrr@5
27
+ - cosine_mrr@10
28
+ - cosine_mrr@100
29
+ - cosine_map@100
30
+ - dot_accuracy@1
31
+ - dot_accuracy@5
32
+ - dot_accuracy@10
33
+ - dot_precision@1
34
+ - dot_precision@5
35
+ - dot_precision@10
36
+ - dot_recall@1
37
+ - dot_recall@5
38
+ - dot_recall@10
39
+ - dot_ndcg@5
40
+ - dot_ndcg@10
41
+ - dot_ndcg@100
42
+ - dot_mrr@5
43
+ - dot_mrr@10
44
+ - dot_mrr@100
45
+ - dot_map@100
46
+ widget:
47
+ - source_sentence: What will be used for the identification of beneficiaries?
48
+ sentences:
49
+ - '''for loanee and within 30 days for non loanee i.e. 15th Aug for Kharif and
50
+ 15th Jan for Rabi for loanee and 31st Aug for Kharif and 31st Jan for Rabi
51
+ for Non Loanee 13 Within 7 days from the date of intimation by ICs CSCs/Banks/
52
+ Intermediary Cut-off date for CSCs/Banks/Intermediary to correct/update the paid
53
+ application intimated by ICs on Crop Insurance Portal 14 Cut-off date for Insurer
54
+ to accept the corrected/updated applications Within 7 days from the date of
55
+ submission of correction/updation by the Bank/CSC Insurance Companies 15 Within
56
+ 7 days from acceptance of proposal by concerned Insurance Company on Portal Cut-off
57
+ date for Banks/ICs to hand over insurance acknowledgement receipt along with folio
58
+ to the insured farmer Banks/ICs for enrolment through their intermediaries 16 Cut
59
+ off date for processing of applications by ICs and auto approval of application
60
+ of insured farmers on crop insurance Portal 60 days from the cut off date for
61
+ enrolment/debit of premium from farmers i.e. 15th September for Kharif and 15th
62
+ February for Rabi seasons 17 Before cut off date of enrolment of farmers Insurance
63
+ Companies/GOI /State Cut off date for raising bills/requisitions with supporting
64
+ documents for releasing of advance premium subsidy based on 50% of 80% of respective
65
+ share of Centre/State in corresponding previous season 18 Release of advance
66
+ upfront premium subsidy (First Instalment)i.e. 50% of 80% of respective share
67
+ of Centre/State in corresponding previous season Within 15days of cut off date
68
+ of enrolment of farmers i.e. 31st July for Kharif Upto 15th August* 19 *state
69
+ may fix earlier dates for early Kharif crops Training and registration of field
70
+ level workers assigned for conduct of CCEs and reporting of the same on crop
71
+ insurance Portal through smart phones/CCE Agri App Upto31st August* *state 20 Registration
72
+ of mobile number of representative of ICs for co-witnessing of CCEs may fix earlier
73
+ dates for early Kharif crops At least 7 days before tentative date for conducting
74
+ CCEs 21 a) Uploading of tentative schedule/date for conducting CCEs (crop-wise/IU
75
+ wise) followed by SMS on one day notice through CCEs app.'''
76
+ - '''8 Banks/PACS/CSC/ insurance agent/online enrolment by farmers etc. Upto
77
+ last date of enrolment of farmers as notified by States for notified crop(s)
78
+ or up to 15th July* for Kharif season Upto last date of enrolment of farmers as
79
+ notified by States for notified crop(s) or up to 15th December* for Rabi season Cut-off
80
+ date for receipt of Applications of farmers/debit of premium from farmers account
81
+ (loanee and non- loanee) by all stakeholders including banks/PACS/CSC/ insurance
82
+ agent/online enrolment by farmers etc. Note: *This is indicative only and district
83
+ wise crop calendar will be the final basis to arrive at cut off date 9 Declaration
84
+ of Prevented sowing State Govt./ IC Strictly within 15 days from cut off date
85
+ for enrolment of farmers i.e 31st July for Kharif and 31st Dec for Rabi 10 Banks/Portal Within
86
+ 15 days of cut-off date for enrolment of farmers/debit of premium for both loanee and non-
87
+ loanee farmers i.e. 31st July for Kharif and 31st Dec for Rabi Cut-off date
88
+ for electronic remittance of premium along with consolidated Declarations to
89
+ respective Insurance Company and uploading of details of individual covered farmers
90
+ on crop insurance Portal by Bank branches (CBs/ RRBs/DCCBs/PACs), followed by SMS
91
+ to all insured farmers from Portal 11 Within 48 Hours of receipt of application
92
+ & premium. Insurance companies and their agents Cut-off date for electronic
93
+ remittance of farmer premium to Insurance Companies for farmers covered on Voluntary
94
+ basis by designated insurance Agent(s) and uploading of details of individual
95
+ covered farmers on crop insurance Portal. Insurance Companies 12 Cut-off date
96
+ for Insurer to accept or reject the farmer''s data on Portal Within 15 days from
97
+ the cut-off date for uploading of data/information by Banks/PACS/CSC/Agent respectively.'''
98
+ - ''' This consent of the beneficiary should be \''to agree that the department
99
+ responsible for implementation of the Pradhan Mantri Kisan Samman Nidhi Yojana
100
+ in Union Government or the State Government / Union Territory Administration can
101
+ use the beneficiary Aadhaar number and other information provided in the declaration
102
+ to verify the eligibility of the beneficiary for scheme as per extant scheme guidelines
103
+ with the concerned agencies\''. 6.3 The existing land-ownership system in the
104
+ concerned State / UT will be used for identification of beneficiaries. Accordingly,
105
+ it is of utmost importance that the land records are clear and updated. Further,
106
+ State / UT Governments would also expedite the progress of digitization of
107
+ the land records and linking the same with Aadhaar as well as bank details of
108
+ the beneficiaries. 6.4 The lists of eligible beneficiaries would be published
109
+ at the village level. Farmers'' families who are eligible but have been excluded
110
+ should be provided an opportunity to represent their case.'''
111
+ - source_sentence: What are weather parameters related to crop condition?
112
+ sentences:
113
+ - '''i. \''Credit Facility\'' means any fund based credit facility extended by
114
+ an Eligible Lending Institution (ELI) to an Eligible Borrower without any Collateral
115
+ Security or Third Party Guarantee ; ii. \''Credit Guarantee Fund\'' means the
116
+ Credit Guarantee Fund for FPOs created with NABARD and NCDC respectively under
117
+ the Scheme with matching grant from DAC&FW for the purpose of extending guarantee
118
+ to the eligible lending institution(s) against their collateral free lending to eligible
119
+ FPOs; iii. \''Eligible Lending Institution (ELI)\'' means a Scheduled Commercial
120
+ Bank for the time being included in the second Schedule to the Reserve Bank of
121
+ India Act, 1934, Regional Rural Banks, Co-operative Banks, Cooperative Credit Society,
122
+ NEDFI, or any other institution (s) as may be decided by the NABARD and/or NCDC,
123
+ as the case may be, in consultation with Government of India from time to time.
124
+ NABARD and NCDC can also finance, if they so desire with the approval of DAC&FW/N-PMFSC.
125
+ NBFCs and such other financing institutions with required net worth and track
126
+ record may also serve as Eligible Lending Institutions (ELIs), for lending to
127
+ FPOs with a moderate spread between their cost of capital and lending rate. However,
128
+ Standard Financial Sector Rating Agency should have rated NBFC **to be AAA**
129
+ to be considered as ELI; iv. \''Guarantee Cover\'' means maximum cover available
130
+ per eligible FPO borrower; v. \''Guarantee Fee\'' means the onetime fee at
131
+ a specified rate of the eligible credit facility sanctioned by the ELI, payable
132
+ by the ELI to NABARD or NCDC, as the case may be; and vi.'''
133
+ - '''| Table No. |
134
+ Topic |\n|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|\n|
135
+ Para | |\n|
136
+ Number | |\n|
137
+ Table 1 |
138
+ Premium rate payable by the farmer |\n|
139
+ Table 2 |
140
+ Seasonality Discipline |\n|
141
+ Table 3 |
142
+ Calculation of crop-wise Sum Insured |\n|
143
+ Table 4 |
144
+ Number of CCEs to be conducted at IU level |\n|
145
+ Table 5 |
146
+ Yield Calculation for multi-picking crop |\n|
147
+ Table 6 | |\n|
148
+ Types of resolution to be used for vegetation index derivation for different | |\n|
149
+ levels of analysis | |\n|
150
+ 19.7 | |\n|
151
+ Table 7 |
152
+ Calculation of Threshold Yield |\n|
153
+ Table 8 | |\n|
154
+ Detailed Procedure for On Account Payment of Claims due to Mid-Season | |\n|
155
+ Adversity | |\n|
156
+ 21.2.7.2 | |\n|
157
+ Table 9 | |\n|
158
+ Detailed Procedure and Timelines for payment of Prevented / Failed Sowing | |\n|
159
+ and Prevented Planting / Germination Claims | |\n|
160
+ 21.3.6.1 | |\n|
161
+ Table 10 | |\n|
162
+ Detailed Procedure and Timelines for payment of | |\n|
163
+ Post Harvest Loss | |\n| | |\n|
164
+ 21.4.8.1 | |\n|
165
+ Table 11 | |\n|
166
+ Detailed Procedure and Timelines for payment of | |\n|
167
+ localized claims | |\n| | |\n|
168
+ 21.5.9.1 | |\n|
169
+ Table 12 |
170
+ Criteria for Performance Evaluation and Ranking of Loss Assessment Agencies |\n|
171
+ Table 13 | |\n|
172
+ Illustration for classification of risks, clustering/clubbing of risks and districts
173
+ | |\n|
174
+ and determination of L1 bidder | |\n|
175
+ Annexure 1 | |\n|
176
+ Table 14 | |\n|
177
+ Penalty and performance Monitoring/Evaluation of Empanelled Insurance | |\n|
178
+ Companies | |\n|
179
+ Annexure 2 | |\n|
180
+ Table 15 |
181
+ Illustrative Evaluation of Efficiency of Nodal Department of State |'''
182
+ - '''gridded or satellite based data, Dry-spell Occurrence, Temperature Anomaly,
183
+ Soil Moisture Analysis (either from satellite or model data) and any other available
184
+ weather parameters (related to crop condition), either from ground or satellite
185
+ data. Another rainfall based index, which can also be studied, is Standardized
186
+ Precipitation Index (SPI). SPI can be developed using IMD gridded rainfall data
187
+ or NOAA CPC rainfall data. However, while using gridded data (either from satellite
188
+ or ground stations), appropriate resolution should be used at appropriate level.
189
+ For example, 0.25 degree data should be used only at district level and not at
190
+ block/village level. High resolution weather data can also be sourced from weather
191
+ companies.'''
192
+ - source_sentence: How is the amount realized by the ELI from the FPC shared between
193
+ SFAC and ELI?
194
+ sentences:
195
+ - '''To substantiate the fact, the most successful example is of dairy co-operative
196
+ in India where professional managers have contributed immensely to make it a success.
197
+ There are other so many examples which prove the absolute requirement of professional
198
+ managers. The number of professional staff could depend on geographical spread
199
+ of business operation, diversity of activities and volume of business. However,
200
+ an FPO should have minimum a CEO/Manager and an Accountant. Accountant is required
201
+ in FPO to look after its day to day accounting work. Based on requirement, FPO
202
+ can engage other staff also. 10.3 The CEO/Manager is to be appointed by the
203
+ executive body of the FPO who should be either graduate in agriculture / agriculture
204
+ marketing / agri-business management or BBA or equivalent. Locally available professionals
205
+ with 10+2 and preferably diploma in agriculture / agriculture marketing / agri-business
206
+ management or in such other related areas may be preferable. The accountant should
207
+ have educational qualification of 10+2 with Mathematics as a compulsory subject
208
+ or alternatively with Commerce or Accountancy background. If any members of the
209
+ FPO meet the above criteria, they may be considered preferably in the selection
210
+ process. 10.4 Under the scheme, financial support towards salary of CEO/Manager
211
+ up to @ Rs. 25,000/- per month and of Accountant up to @ Rs.10,000/- per
212
+ month with annual increment up to 5% is to be provided from the earmarked financial
213
+ support for first 3 years only. Thereafter, FPOs will manage from their own resources
214
+ to pay the salary of CEO/Manager and Accountant. In order to create interest
215
+ of good professional activities of CEO/Accountant, the FPO may also offer higher
216
+ payment with their own sources of funds on above of Govt. support. One CEO will
217
+ provide full time services to one FPO at a time only.'''
218
+ - '''7.3.1 Three levels of Indemnity, viz., 70%, 80% and 90%. SLCCCI in consultation
219
+ with Insurance Companies shall approve indemnity levels for notified crops at
220
+ district level. Threshold Yield (TY) shall be notified in the Tender for the
221
+ current season and the same will be used for claim calculation for that season.
222
+ The Average Yield of a notified crop in Insurance Unit (IU) will be average yield
223
+ of best five years out of last seven years. The Threshold yield of the notified
224
+ crop is equal to Average Yield multiplied by Indemnity level. The Threshold Yield
225
+ for any crop and IU shall compulsorily be part of the notification for the season
226
+ and shall not change at any point during that season. 7.3.2 Calculation and
227
+ Notification of Threshold Yield: For calculation of Threshold Yield, historical
228
+ average yield of best five out of last seven years shall be considered. Further
229
+ Threshold Yield should be defined only at notified area level and once notified
230
+ in the Notification issued by the State should not be changed at later stage
231
+ under any circumstances. In case of multi-year contract, the Threshold Yield for the
232
+ subsequent years shall be revised by adding/considering the yields of immediate
233
+ previous corresponding season. The revised TY and Sum Insured (if revised) should
234
+ be notified accordingly at the beginning of each crop season in case of multi-year
235
+ tender.'''
236
+ - '''a. Only such Claim as is submitted by the ELI within a maximum period of one
237
+ year from date of NPA or as specified by SFAC from time to time, shall be considered
238
+ by SFAC. b. On receiving a claim, the I&CSC shall review in detail the reasons
239
+ for the Default. The Committee reserves the right to reject any proposal where
240
+ the Guidelines have not been strictly followed or if any misrepresentation or
241
+ concealment of facts is found leading to undue favour to the concerned FPC. c.
242
+ SFAC shall honour 75 per cent of the Guaranteed Amount in Default subject to a maximum
243
+ of 75 per cent of the guaranteed cap amount, on submission of claim by the ELI
244
+ where appropriate action for recovery has been initiated. The balance 25 per cent
245
+ of the default or guaranteed cap amount, as the case may be, shall be paid on
246
+ conclusion of recovery proceedings by ELI. d. SFAC shall pay claims found in
247
+ order and complete in all respects, within 90 days. e. The outstanding dues of
248
+ the FPC to ELI shall be reduced to the extent of the claim amount settled by
249
+ SFAC. f. The ELI shall continue to make efforts to realise the balance amount
250
+ due from the g. defaulting FPC even after settlement of the Guarantee. h. SFAC
251
+ has the right to claim from the ELI any amount that is realised by the ELI from the
252
+ defaulting FPC even after settlement of the guarantee amount. i. Any amount realized
253
+ by the ELI from the FPC shall be shared in the ratio of 85%:15% between SFAC
254
+ & ELI.'''
255
+ - source_sentence: What directions is the lending institution bound to comply with?
256
+ sentences:
257
+ - ''' The I&CSC shall regularly keep the NABARD and NCDC, as the case may be, informed
258
+ about all major decisions and actions taken by it in this regard, and shall work
259
+ under its overall control and guidance with regard to the Fund and the Scheme.
260
+ Simultaneously, the NABARD and NCDC will keep the N- PMAFSC apprised about such
261
+ decisions and actions taken in this regard. v. Decisions regarding Guarantee
262
+ Pay-Outs shall be the primary responsibility of I&CSC which shall meet at least
263
+ once every quarter or as often as necessary. vi. The ELI may invoke the Guarantee
264
+ in respect of Credit Facility within a maximum period of one year from the date
265
+ of NPA, if the conditions set out by NABARD or NCDC, as the case may be , are
266
+ met out .'''
267
+ - ''' The lending institution shall be bound to comply with such directions as NABARD
268
+ or NCDC, as the case may be, may deem fit to issue from time to time, for facilitating
269
+ recoveries of the guaranteed account, or safeguarding its interest as a guarantor. ix. The
270
+ lending institution shall, in particular, refrain from any act either before or
271
+ subsequent to invocation of guarantee, which may adversely affect the interest
272
+ of NABARD or NCDC, as the case may be, as the guarantor. x. The lending institution
273
+ shall be bound under the Scheme to intimate in advance to NABARD or NCDC, as the
274
+ case may be, its intention to enter into any compromise or arrangement, which
275
+ may have effect of discharge or waiver of primary security. xi. Further, the
276
+ lending institution shall secure for NABARD or NCDC, as the case may be, or
277
+ its appointed agency, through a stipulation in an Agreement with the Borrower
278
+ or otherwise, the right to list the defaulted Borrowers'' names and particulars
279
+ on the Website of NABARD or NCDC, as the case may be or Integrated Portal'''
280
+ - '''| AIC | Agricultural Insurance Company of India Ltd |\n|--------|----------------------------------------------------------------------------------------------|\n|
281
+ ACF | Area Correction Factor |\n|
282
+ APR | Actuarial Premium Rate |\n|
283
+ ARG | Automatic Rain Gauge |\n|
284
+ AWS | Automatic Weather Stations |\n|
285
+ AY | Actual Yield |\n|
286
+ CB | Commercial Banks |\n|
287
+ CBS | Core Banking Solution |\n|
288
+ CCAFS | Research program on Climate Change, Agriculture and Food Security |\n|
289
+ CCEs | Crop Cutting Experiments |\n|
290
+ CPMU | Central Program Management Unit |\n|
291
+ CSC | Common Service Center |\n|
292
+ CSO | Central Statistical Office |\n|
293
+ CV | Co-efficient of Variance |\n|
294
+ DAC&FW | Department of Agriculture, Cooperation and Farmers Welfare |\n|
295
+ DBT | Direct Benefit Transfer |\n|
296
+ DCCBs | District Central Cooperative Banks |\n|
297
+ DLMC | District Level Monitoring Committee |\n|
298
+ DLTC | District Level Technical Committee |\n|
299
+ ESI | Expected Sum Insured |\n|
300
+ FASAL | Forecasting Agricultural output using Space, Agro meteorological and
301
+ Land based observations |\n| FIs | Financial Institutions |\n|
302
+ GIC Re | General Insurance Corporation of India |\n|
303
+ GFR | General Financial Rule |\n|
304
+ GIS | Geographic Information System |\n|
305
+ GPS | Global Positioning System |\n|
306
+ IA | Implementing Agency |\n|
307
+ IC | Insurance Company |\n|
308
+ IASRI | Indian Agricultural Statistical Research Institute |\n|
309
+ IFPRI | International Food Policy Research Institute |\n|
310
+ IMD | Indian Meteorological Department |\n|
311
+ IRRI | International Rice Research Institute |\n|
312
+ IRDAI | Insurance Regulatory and Development Authority of India |\n|
313
+ ISRO | Indian Space Research Organisation |\n|
314
+ ISS | Interest Subvention Scheme |\n|
315
+ IT | Information Technology |\n|
316
+ IU | Insurance Unit |\n|
317
+ KCC | Kisan Credit Cards |\n|
318
+ LC | Loss Cost |\n|
319
+ LPA | Long period Average |\n|
320
+ LPC | Land Possession Certificate |\n|
321
+ MIS | Management Information System |\n|
322
+ MNCFC | Mahalanobis National Crop Forecast Centre |\n|
323
+ MOA&FW | Ministry of Agriculture and Farmers Welfare |'''
324
+ - source_sentence: How can we identify outliers in crop yield?
325
+ sentences:
326
+ - '''(i) It will closely monitor and review the progress of FPO development and functioning
327
+ by holding its regular meetings. (ii) It will suggest the potential produce
328
+ clusters in the district (where FPOs can be formed & promoted) to N-PMAFSC and
329
+ will also assist Implementing Agencies, CBBOs and other stakeholders in identification
330
+ of cluster(s) and activity (ies) and also in mobilization of farmers. (iii) It
331
+ will resolve the financial constraints of FPOs through District Level Bankers'' Committee
332
+ and provide feedback to N-PMAFSC. (iv) It will identify the constraints in implementation
333
+ of scheme at the ground level and communicate the same to State Level Consultative
334
+ Committee for further taking up the matter with DAC&FW and N-PMAFSC for appropriate
335
+ policy decision. (v) Any other matter so decided by the committee in the interest
336
+ of the scheme and farmers. 14.4 Close and effective monitoring has been considered
337
+ a major trigger for success of this scheme. Therefore, in addition to three tiered
338
+ afore-stated structured mechanism for monitoring of the scheme, there shall be
339
+ continuous in-house monitoring by DAC&FW and by the Implementing Agencies also.
340
+ The DAC&FW may utilize the services of Directorate of Marketing & Inspection (DMI),
341
+ which has existence through its Regional & Sub-Offices across the country. For
342
+ effective monitoring, DAC&FW may engage consultants also and cost for same will
343
+ be borne from the budget of the scheme itself.'''
344
+ - '''Under CGF, NABARD and NCDC, as the case may be, shall cover: i. Fund based
345
+ Credit facilities already sanctioned / extended within six months from the date
346
+ of the application for the Guarantee Cover or intended to be extended singly or
347
+ jointly by one or more than one Eligible Lending Institution (ELI) to a single
348
+ eligible FPO borrower by way of term loan and/or working capital/composite credit
349
+ facilities without any collateral security and/or third party guarantees. ii.
350
+ The ELI can extend credit without any limit; however, the Guarantee Cover shall be
351
+ limited to the maximum guarantee cover specified under the Scheme. iii. Non-Banking
352
+ Financial Companies (NBFCs) and such other Financial Institutions (FIs) with
353
+ required net worth, track record and rating of AAA may also be accommodated
354
+ as Eligible Lending Institutions (ELIs), such NBFC should on-ward lend to FPOs
355
+ with a moderate spread between their cost of capital and lending rate.'''
356
+ - '''Identification of Outliers: All these above analyses can be used to check whether
357
+ there was any reason for yield deviation as presented in the CCE data. Then a
358
+ yield proxy map may be prepared. The Yield proxy map can be derived from remote
359
+ sensing vegetation indices (single or combination of indices), crop simulation
360
+ model output, or an integration of various parameters, which are related to crop
361
+ yield, such as soil, weather (gridded), satellite based products, etc. Whatever,
362
+ yield proxies to be used, it is the responsibility of the organization to record documentary
363
+ evidence (from their or other''s published work) that the yield proxy is related
364
+ to the particular crop''s yield. Then the IU level yields need to be overlaid
365
+ on the yield proxy map. Both yield proxy and CCE yield can be divided into 4-5
366
+ categories (e.g. Very good, Good, Medium, Poor, Very poor). Wherever there is
367
+ large mismatch between yield proxy and the CCE yield (more than 2 levels), the
368
+ CCE yield for that IU can be considered, as outliers.'''
369
+ pipeline_tag: sentence-similarity
370
+ model-index:
371
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
372
+ results:
373
+ - task:
374
+ type: information-retrieval
375
+ name: Information Retrieval
376
+ dataset:
377
+ name: val evaluator
378
+ type: val_evaluator
379
+ metrics:
380
+ - type: cosine_accuracy@1
381
+ value: 0.48
382
+ name: Cosine Accuracy@1
383
+ - type: cosine_accuracy@5
384
+ value: 0.88
385
+ name: Cosine Accuracy@5
386
+ - type: cosine_accuracy@10
387
+ value: 0.95
388
+ name: Cosine Accuracy@10
389
+ - type: cosine_precision@1
390
+ value: 0.48
391
+ name: Cosine Precision@1
392
+ - type: cosine_precision@5
393
+ value: 0.17599999999999993
394
+ name: Cosine Precision@5
395
+ - type: cosine_precision@10
396
+ value: 0.09499999999999999
397
+ name: Cosine Precision@10
398
+ - type: cosine_recall@1
399
+ value: 0.48
400
+ name: Cosine Recall@1
401
+ - type: cosine_recall@5
402
+ value: 0.88
403
+ name: Cosine Recall@5
404
+ - type: cosine_recall@10
405
+ value: 0.95
406
+ name: Cosine Recall@10
407
+ - type: cosine_ndcg@5
408
+ value: 0.7065704999222873
409
+ name: Cosine Ndcg@5
410
+ - type: cosine_ndcg@10
411
+ value: 0.7288298734374183
412
+ name: Cosine Ndcg@10
413
+ - type: cosine_ndcg@100
414
+ value: 0.7407135931762043
415
+ name: Cosine Ndcg@100
416
+ - type: cosine_mrr@5
417
+ value: 0.6475
418
+ name: Cosine Mrr@5
419
+ - type: cosine_mrr@10
420
+ value: 0.6564841269841272
421
+ name: Cosine Mrr@10
422
+ - type: cosine_mrr@100
423
+ value: 0.6595216619129662
424
+ name: Cosine Mrr@100
425
+ - type: cosine_map@100
426
+ value: 0.6595216619129661
427
+ name: Cosine Map@100
428
+ - type: dot_accuracy@1
429
+ value: 0.48
430
+ name: Dot Accuracy@1
431
+ - type: dot_accuracy@5
432
+ value: 0.88
433
+ name: Dot Accuracy@5
434
+ - type: dot_accuracy@10
435
+ value: 0.95
436
+ name: Dot Accuracy@10
437
+ - type: dot_precision@1
438
+ value: 0.48
439
+ name: Dot Precision@1
440
+ - type: dot_precision@5
441
+ value: 0.17599999999999993
442
+ name: Dot Precision@5
443
+ - type: dot_precision@10
444
+ value: 0.09499999999999999
445
+ name: Dot Precision@10
446
+ - type: dot_recall@1
447
+ value: 0.48
448
+ name: Dot Recall@1
449
+ - type: dot_recall@5
450
+ value: 0.88
451
+ name: Dot Recall@5
452
+ - type: dot_recall@10
453
+ value: 0.95
454
+ name: Dot Recall@10
455
+ - type: dot_ndcg@5
456
+ value: 0.7065704999222873
457
+ name: Dot Ndcg@5
458
+ - type: dot_ndcg@10
459
+ value: 0.7288298734374183
460
+ name: Dot Ndcg@10
461
+ - type: dot_ndcg@100
462
+ value: 0.7407135931762043
463
+ name: Dot Ndcg@100
464
+ - type: dot_mrr@5
465
+ value: 0.6475
466
+ name: Dot Mrr@5
467
+ - type: dot_mrr@10
468
+ value: 0.6564841269841272
469
+ name: Dot Mrr@10
470
+ - type: dot_mrr@100
471
+ value: 0.6595216619129662
472
+ name: Dot Mrr@100
473
+ - type: dot_map@100
474
+ value: 0.6595216619129661
475
+ name: Dot Map@100
476
+ ---
477
+
478
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
479
+
480
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
481
+
482
+ ## Model Details
483
+
484
+ ### Model Description
485
+ - **Model Type:** Sentence Transformer
486
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
487
+ - **Maximum Sequence Length:** 512 tokens
488
+ - **Output Dimensionality:** 384 tokens
489
+ - **Similarity Function:** Cosine Similarity
490
+ <!-- - **Training Dataset:** Unknown -->
491
+ <!-- - **Language:** Unknown -->
492
+ <!-- - **License:** Unknown -->
493
+
494
+ ### Model Sources
495
+
496
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
497
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
498
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
499
+
500
+ ### Full Model Architecture
501
+
502
+ ```
503
+ SentenceTransformer(
504
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
505
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
506
+ (2): Normalize()
507
+ )
508
+ ```
509
+
510
+ ## Usage
511
+
512
+ ### Direct Usage (Sentence Transformers)
513
+
514
+ First install the Sentence Transformers library:
515
+
516
+ ```bash
517
+ pip install -U sentence-transformers
518
+ ```
519
+
520
+ Then you can load this model and run inference.
521
+ ```python
522
+ from sentence_transformers import SentenceTransformer
523
+
524
+ # Download from the 🤗 Hub
525
+ model = SentenceTransformer("smokxy/embedding_finetuned")
526
+ # Run inference
527
+ sentences = [
528
+ 'How can we identify outliers in crop yield?',
529
+ "'Identification of Outliers: All these above analyses can be used to check whether there was any reason for yield deviation as presented in the CCE data. Then a yield proxy map may be prepared. The Yield proxy map can be derived from remote sensing vegetation indices (single or combination of indices), crop simulation model output, or an integration of various parameters, which are related to crop yield, such as soil, weather (gridded), satellite based products, etc. Whatever, yield proxies to be used, it is the responsibility of the organization to record documentary evidence (from their or other's published work) that the yield proxy is related to the particular crop's yield. Then the IU level yields need to be overlaid on the yield proxy map. Both yield proxy and CCE yield can be divided into 4-5 categories (e.g. Very good, Good, Medium, Poor, Very poor). Wherever there is large mismatch between yield proxy and the CCE yield (more than 2 levels), the CCE yield for that IU can be considered, as outliers.'",
530
+ "'Under CGF, NABARD and NCDC, as the case may be, shall cover: i. Fund based Credit facilities already sanctioned / extended within six months from the date of the application for the Guarantee Cover or intended to be extended singly or jointly by one or more than one Eligible Lending Institution (ELI) to a single eligible FPO borrower by way of term loan and/or working capital/composite credit facilities without any collateral security and/or third party guarantees. ii. The ELI can extend credit without any limit; however, the Guarantee Cover shall be limited to the maximum guarantee cover specified under the Scheme. iii. Non-Banking Financial Companies (NBFCs) and such other Financial Institutions (FIs) with required net worth, track record and rating of AAA may also be accommodated as Eligible Lending Institutions (ELIs), such NBFC should on-ward lend to FPOs with a moderate spread between their cost of capital and lending rate.'",
531
+ ]
532
+ embeddings = model.encode(sentences)
533
+ print(embeddings.shape)
534
+ # [3, 384]
535
+
536
+ # Get the similarity scores for the embeddings
537
+ similarities = model.similarity(embeddings, embeddings)
538
+ print(similarities.shape)
539
+ # [3, 3]
540
+ ```
541
+
542
+ <!--
543
+ ### Direct Usage (Transformers)
544
+
545
+ <details><summary>Click to see the direct usage in Transformers</summary>
546
+
547
+ </details>
548
+ -->
549
+
550
+ <!--
551
+ ### Downstream Usage (Sentence Transformers)
552
+
553
+ You can finetune this model on your own dataset.
554
+
555
+ <details><summary>Click to expand</summary>
556
+
557
+ </details>
558
+ -->
559
+
560
+ <!--
561
+ ### Out-of-Scope Use
562
+
563
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
564
+ -->
565
+
566
+ ## Evaluation
567
+
568
+ ### Metrics
569
+
570
+ #### Information Retrieval
571
+ * Dataset: `val_evaluator`
572
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
573
+
574
+ | Metric | Value |
575
+ |:--------------------|:-----------|
576
+ | cosine_accuracy@1 | 0.48 |
577
+ | cosine_accuracy@5 | 0.88 |
578
+ | cosine_accuracy@10 | 0.95 |
579
+ | cosine_precision@1 | 0.48 |
580
+ | cosine_precision@5 | 0.176 |
581
+ | cosine_precision@10 | 0.095 |
582
+ | cosine_recall@1 | 0.48 |
583
+ | cosine_recall@5 | 0.88 |
584
+ | cosine_recall@10 | 0.95 |
585
+ | cosine_ndcg@5 | 0.7066 |
586
+ | cosine_ndcg@10 | 0.7288 |
587
+ | cosine_ndcg@100 | 0.7407 |
588
+ | cosine_mrr@5 | 0.6475 |
589
+ | cosine_mrr@10 | 0.6565 |
590
+ | cosine_mrr@100 | 0.6595 |
591
+ | **cosine_map@100** | **0.6595** |
592
+ | dot_accuracy@1 | 0.48 |
593
+ | dot_accuracy@5 | 0.88 |
594
+ | dot_accuracy@10 | 0.95 |
595
+ | dot_precision@1 | 0.48 |
596
+ | dot_precision@5 | 0.176 |
597
+ | dot_precision@10 | 0.095 |
598
+ | dot_recall@1 | 0.48 |
599
+ | dot_recall@5 | 0.88 |
600
+ | dot_recall@10 | 0.95 |
601
+ | dot_ndcg@5 | 0.7066 |
602
+ | dot_ndcg@10 | 0.7288 |
603
+ | dot_ndcg@100 | 0.7407 |
604
+ | dot_mrr@5 | 0.6475 |
605
+ | dot_mrr@10 | 0.6565 |
606
+ | dot_mrr@100 | 0.6595 |
607
+ | dot_map@100 | 0.6595 |
608
+
609
+ <!--
610
+ ## Bias, Risks and Limitations
611
+
612
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
613
+ -->
614
+
615
+ <!--
616
+ ### Recommendations
617
+
618
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
619
+ -->
620
+
621
+ ## Training Details
622
+
623
+ ### Training Hyperparameters
624
+ #### Non-Default Hyperparameters
625
+
626
+ - `eval_strategy`: steps
627
+ - `gradient_accumulation_steps`: 4
628
+ - `learning_rate`: 1e-05
629
+ - `weight_decay`: 0.01
630
+ - `num_train_epochs`: 1.0
631
+ - `warmup_ratio`: 0.1
632
+ - `load_best_model_at_end`: True
633
+
634
+ #### All Hyperparameters
635
+ <details><summary>Click to expand</summary>
636
+
637
+ - `overwrite_output_dir`: False
638
+ - `do_predict`: False
639
+ - `eval_strategy`: steps
640
+ - `prediction_loss_only`: True
641
+ - `per_device_train_batch_size`: 8
642
+ - `per_device_eval_batch_size`: 8
643
+ - `per_gpu_train_batch_size`: None
644
+ - `per_gpu_eval_batch_size`: None
645
+ - `gradient_accumulation_steps`: 4
646
+ - `eval_accumulation_steps`: None
647
+ - `learning_rate`: 1e-05
648
+ - `weight_decay`: 0.01
649
+ - `adam_beta1`: 0.9
650
+ - `adam_beta2`: 0.999
651
+ - `adam_epsilon`: 1e-08
652
+ - `max_grad_norm`: 1.0
653
+ - `num_train_epochs`: 1.0
654
+ - `max_steps`: -1
655
+ - `lr_scheduler_type`: linear
656
+ - `lr_scheduler_kwargs`: {}
657
+ - `warmup_ratio`: 0.1
658
+ - `warmup_steps`: 0
659
+ - `log_level`: passive
660
+ - `log_level_replica`: warning
661
+ - `log_on_each_node`: True
662
+ - `logging_nan_inf_filter`: True
663
+ - `save_safetensors`: True
664
+ - `save_on_each_node`: False
665
+ - `save_only_model`: False
666
+ - `restore_callback_states_from_checkpoint`: False
667
+ - `no_cuda`: False
668
+ - `use_cpu`: False
669
+ - `use_mps_device`: False
670
+ - `seed`: 42
671
+ - `data_seed`: None
672
+ - `jit_mode_eval`: False
673
+ - `use_ipex`: False
674
+ - `bf16`: False
675
+ - `fp16`: False
676
+ - `fp16_opt_level`: O1
677
+ - `half_precision_backend`: auto
678
+ - `bf16_full_eval`: False
679
+ - `fp16_full_eval`: False
680
+ - `tf32`: None
681
+ - `local_rank`: 0
682
+ - `ddp_backend`: None
683
+ - `tpu_num_cores`: None
684
+ - `tpu_metrics_debug`: False
685
+ - `debug`: []
686
+ - `dataloader_drop_last`: False
687
+ - `dataloader_num_workers`: 0
688
+ - `dataloader_prefetch_factor`: None
689
+ - `past_index`: -1
690
+ - `disable_tqdm`: False
691
+ - `remove_unused_columns`: True
692
+ - `label_names`: None
693
+ - `load_best_model_at_end`: True
694
+ - `ignore_data_skip`: False
695
+ - `fsdp`: []
696
+ - `fsdp_min_num_params`: 0
697
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
698
+ - `fsdp_transformer_layer_cls_to_wrap`: None
699
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
700
+ - `deepspeed`: None
701
+ - `label_smoothing_factor`: 0.0
702
+ - `optim`: adamw_torch
703
+ - `optim_args`: None
704
+ - `adafactor`: False
705
+ - `group_by_length`: False
706
+ - `length_column_name`: length
707
+ - `ddp_find_unused_parameters`: None
708
+ - `ddp_bucket_cap_mb`: None
709
+ - `ddp_broadcast_buffers`: False
710
+ - `dataloader_pin_memory`: True
711
+ - `dataloader_persistent_workers`: False
712
+ - `skip_memory_metrics`: True
713
+ - `use_legacy_prediction_loop`: False
714
+ - `push_to_hub`: False
715
+ - `resume_from_checkpoint`: None
716
+ - `hub_model_id`: None
717
+ - `hub_strategy`: every_save
718
+ - `hub_private_repo`: False
719
+ - `hub_always_push`: False
720
+ - `gradient_checkpointing`: False
721
+ - `gradient_checkpointing_kwargs`: None
722
+ - `include_inputs_for_metrics`: False
723
+ - `eval_do_concat_batches`: True
724
+ - `fp16_backend`: auto
725
+ - `push_to_hub_model_id`: None
726
+ - `push_to_hub_organization`: None
727
+ - `mp_parameters`:
728
+ - `auto_find_batch_size`: False
729
+ - `full_determinism`: False
730
+ - `torchdynamo`: None
731
+ - `ray_scope`: last
732
+ - `ddp_timeout`: 1800
733
+ - `torch_compile`: False
734
+ - `torch_compile_backend`: None
735
+ - `torch_compile_mode`: None
736
+ - `dispatch_batches`: None
737
+ - `split_batches`: None
738
+ - `include_tokens_per_second`: False
739
+ - `include_num_input_tokens_seen`: False
740
+ - `neftune_noise_alpha`: None
741
+ - `optim_target_modules`: None
742
+ - `batch_eval_metrics`: False
743
+ - `batch_sampler`: batch_sampler
744
+ - `multi_dataset_batch_sampler`: proportional
745
+
746
+ </details>
747
+
748
+ ### Training Logs
749
+ | Epoch | Step | Training Loss | loss | val_evaluator_cosine_map@100 |
750
+ |:---------:|:------:|:-------------:|:----------:|:----------------------------:|
751
+ | **0.531** | **15** | **0.4478** | **0.0912** | **0.6595** |
752
+ | 0.9912 | 28 | - | 0.0912 | 0.6595 |
753
+
754
+ * The bold row denotes the saved checkpoint.
755
+
756
+ ### Framework Versions
757
+ - Python: 3.10.14
758
+ - Sentence Transformers: 3.0.1
759
+ - Transformers: 4.41.1
760
+ - PyTorch: 2.3.0+cu121
761
+ - Accelerate: 0.27.2
762
+ - Datasets: 2.19.1
763
+ - Tokenizers: 0.19.1
764
+
765
+ ## Citation
766
+
767
+ ### BibTeX
768
+
769
+ #### Sentence Transformers
770
+ ```bibtex
771
+ @inproceedings{reimers-2019-sentence-bert,
772
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
773
+ author = "Reimers, Nils and Gurevych, Iryna",
774
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
775
+ month = "11",
776
+ year = "2019",
777
+ publisher = "Association for Computational Linguistics",
778
+ url = "https://arxiv.org/abs/1908.10084",
779
+ }
780
+ ```
781
+
782
+ #### GISTEmbedLoss
783
+ ```bibtex
784
+ @misc{solatorio2024gistembed,
785
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
786
+ author={Aivin V. Solatorio},
787
+ year={2024},
788
+ eprint={2402.16829},
789
+ archivePrefix={arXiv},
790
+ primaryClass={cs.LG}
791
+ }
792
+ ```
793
+
794
+ <!--
795
+ ## Glossary
796
+
797
+ *Clearly define terms in order to be accessible across audiences.*
798
+ -->
799
+
800
+ <!--
801
+ ## Model Card Authors
802
+
803
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
804
+ -->
805
+
806
+ <!--
807
+ ## Model Card Contact
808
+
809
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
810
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c9e5db1d3ec968d6f0160b28eb1185750c49200f0f93798f99afd2677904685
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff