smartinez1
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -46,7 +46,58 @@ tags:
|
|
46 |
|
47 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
### Downstream Use [optional]
|
52 |
|
|
|
46 |
|
47 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
48 |
|
49 |
+
```python
|
50 |
+
|
51 |
+
from huggingface_hub import login
|
52 |
+
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer
|
53 |
+
import torch
|
54 |
+
from peft import PeftModel, PeftConfig
|
55 |
+
from transformers import AutoModelForCausalLM, pipeline
|
56 |
+
|
57 |
+
|
58 |
+
config = PeftConfig.from_pretrained("smartinez1/Llama-3.1-8B-FINLLM")
|
59 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B")
|
60 |
+
model = PeftModel.from_pretrained(base_model, "smartinez1/Llama-3.1-8B-FINLLM")
|
61 |
+
# Load the tokenizer associated with the base model
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
|
63 |
+
|
64 |
+
# Set up the text generation pipeline with the PEFT model, specifying the device
|
65 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
|
66 |
+
|
67 |
+
# List of user inputs
|
68 |
+
user_inputs = [
|
69 |
+
"Provide a link for Credit Card Accountability Responsibility and Disclosure Act law.",
|
70 |
+
"Define the following term: National Automated Clearing House Association.",
|
71 |
+
"Expand the following acronym into its full form: CIA."
|
72 |
+
]
|
73 |
+
|
74 |
+
# Define the prompt template
|
75 |
+
prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
76 |
+
|
77 |
+
### Instruction:
|
78 |
+
{0}
|
79 |
+
|
80 |
+
### Answer:
|
81 |
+
{1}
|
82 |
+
"""
|
83 |
+
|
84 |
+
# Loop over each user input and generate a response
|
85 |
+
for user_input in user_inputs:
|
86 |
+
# Format the user input into the prompt
|
87 |
+
prompt = prompt_template.format(user_input, "")
|
88 |
+
|
89 |
+
# Generate a response from the model
|
90 |
+
response = generator(prompt, max_length=200, num_return_sequences=1, do_sample=True)
|
91 |
+
|
92 |
+
# Extract and clean up the AI's response
|
93 |
+
response_str = response[0]['generated_text'].split('### Answer:')[1].strip()
|
94 |
+
cut_ind = response_str.find("#") # Remove extra information after the response
|
95 |
+
response_str = response_str[:cut_ind].strip() if cut_ind != -1 else response_str
|
96 |
+
|
97 |
+
# Display the AI's response
|
98 |
+
print(f"User: {user_input}")
|
99 |
+
print(f"AI: {response_str}")
|
100 |
+
print("-" * 50) # Separator for clarity
|
101 |
|
102 |
### Downstream Use [optional]
|
103 |
|