Translation
Transformers
Safetensors
m2m_100
text2text-generation
Inference Endpoints
cointegrated commited on
Commit
676efa5
·
verified ·
1 Parent(s): d3afeb2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -140
README.md CHANGED
@@ -1,199 +1,126 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
91
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
 
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ language:
5
+ - myv
6
+ - ru
7
+ - ar
8
+ - en
9
+ - et
10
+ - fr
11
+ - de
12
+ - kk
13
+ - ch
14
+ - zh
15
+ - mn
16
+ - es
17
+ - tr
18
+ - uk
19
+ - uz
20
+ base_model:
21
+ - facebook/nllb-200-distilled-600M
22
+ datasets:
23
+ - slone/myv_ru_2022
24
+ - slone/e-mordovia-articles-2023
25
+ pipeline_tag: translation
26
  ---
27
 
28
+ # Model Card for NLLB-with-myv-v2024 (a translation model for Erzya)
 
 
29
 
30
+ This is a version of the [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) machine translation model
31
+ with one added language: Erzya (the new language code is `myv_Cyrl`).
32
+ It can probably translate from all 202 NLLB languages, but it fine-tuned with the focus on Erzya, Russian, and, to a lesser extent,
33
+ on Arabic, English, Estonian, Finnish, French, German, Kazakh, Mandarin, Mongolian, Spanish, Turkish, Ukrainian, and Uzbek.
34
 
35
 
36
  ## Model Details
37
 
38
  ### Model Description
39
 
 
 
 
40
 
41
+ - **Developed by:** Isai Gordeev, Sergey Kuldin and David Dale
42
+ - **Model type:** Encoder-decoder transformer
43
+ - **Language(s) (NLP):** Erzya, Russian, and all the 202 NLLB languages.
44
+ - **License:** CC-BY-NC-4.0
45
+ - **Finetuned from model:** [nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M)
 
 
46
 
47
  ### Model Sources [optional]
48
 
49
  <!-- Provide the basic links for the model. -->
50
 
51
+ - **Repository:** will be published later
52
+ - **Paper:** will be published later
53
+ - **Demo:** https://lango.to/ (it is powered by a similar model)
54
 
55
  ## Uses
56
 
 
 
57
  ### Direct Use
58
+ Translation between Erzya, Russian, and potentially other languages. The model seems to be SOTA for translating into Erzya.
 
 
 
 
 
 
 
 
 
59
 
60
  ### Out-of-Scope Use
61
+ Translation between other NLLB languages, not inclusing Erzya as source or target.
 
 
 
62
 
63
  ## Bias, Risks, and Limitations
64
+ The model is not producing the most fluent translations into Russian and other high-resourced languages.
65
 
66
+ Its translations into Erzya seem to be better than anything else, but may still include inaccurate or ungrammatical translations,
67
+ so they should be always manually reviewed before any high-responsibility use.
 
68
 
69
  ### Recommendations
70
+ Please contact the authors for any substantial recommendation.
 
 
 
71
 
72
  ## How to Get Started with the Model
73
 
74
+ See the NLLB generation code: https://huggingface.co/docs/transformers/v4.44.2/en/model_doc/nllb#generating-with-nllb.
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
+ - https://huggingface.co/datasets/slone/myv_ru_2022
81
+ - https://huggingface.co/datasets/slone/e-mordovia-articles-2023
 
82
 
83
  ### Training Procedure
84
 
 
85
 
86
  #### Preprocessing [optional]
87
 
88
+ The preprocessing code is adapted from the Stopes repo of the NLLB team:
89
+ https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
90
 
91
+ It performs punctuation normalization, nonprintable character removal and Unicode normalization.
92
 
93
  #### Training Hyperparameters
94
 
95
+ The tokenizer of the model was updated with 6209 new Erzya tokens. They were initialized with the average embeddings of the old tokens from which they are combined.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
+ - training regime: `fp32`
98
+ - batch_size: 6
99
+ - grad_acc_steps: 4
100
+ - max_length: 128
101
+ - optimizer: Adafactor
102
+ - lr: 1e-4
103
+ - clip_threshold=1.0
104
+ - weight_decay: 1e-3
105
+ - warmup_steps: 3_000 (with a linear warmup from 0)
106
+ - training_steps: 220_000
107
+ - weight_loss_coef: 100 (a coefficient for the additional penalty, MSE between the embeddings of old tokens and their values for NLLB-200)
108
 
 
109
 
110
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
  ### Model Architecture and Objective
113
 
114
+ A standard encoder-decoder translation model with cross-entropy loss.
115
 
116
  ### Compute Infrastructure
117
 
118
+ Google Colab with a T4 GPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
+ ```
121
+ pip install --upgrade sentencepiece transformers==4.40 datasets sacremoses editdistance sacrebleu razdel ctranslate2
122
+ ```
123
 
124
  ## Model Card Contact
125
 
126
+ @cointegrated